![车工36“技”](https://wfqqreader-1252317822.image.myqcloud.com/cover/606/654606/b_654606.jpg)
五、常用三角计算和计算方法
1. 计算公式(见表1-12)
表1-12 计算公式
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0022_0038.jpg?sign=1738825636-uLNy1Y3Qqk57b8iDFdoQ5SIkfPlQ8Wg0-0-e8cb7a1c461d98b655d0756136c76a64)
【例】 如图1-2所示,一个箱体两孔中心横向距离a=90mm,纵向距离b=70mm,求两孔的中心距离c是多少?
解:用公式
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0023_0040.jpg?sign=1738825636-upw297f6hiMbLPXexetbBNIiJLRdui4f-0-2f72da38fdbd3fc09f3c0488b663a9fb)
图1-2
查平方根表,则
。
所以两孔中心距离c=114mm。
2.30°、45°、60°角的三角函数值(表1-13)
表1-13 30°、45°、60°角的三角函数值
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0023_0043.jpg?sign=1738825636-QHwke8rRAHor65f8v8O9VsdUIKhqfxrO-0-c46f8c424e53b6d6441467cf161d00c7)
3. 三角函数表(见表1-14)
表1-14 三角函数表
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0024_0044.jpg?sign=1738825636-C3hPD5VnCfACX5HBOSpEx124j1lMsMex-0-78e6eb67a11b1ad770e7ea55734b9f2e)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0025_0045.jpg?sign=1738825636-nUIKPubCVobWatGWN3dibt4A4NQLc1z5-0-8eb0c9a72e4a57f11db746aea99bdf42)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0026_0046.jpg?sign=1738825636-fxVwzvjNmyzOSn2P9fbs2jcwPHPlJxrv-0-f96c8022025fa6890bea9555ecfdb345)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0027_0047.jpg?sign=1738825636-s55NtX3Yj9s3WDjB5k71NaIyMLGiiWnx-0-326aa801804a7ac32f700b03c0737d74)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0028_0048.jpg?sign=1738825636-Piq7TtQrtDBFqZDQczi9c7CE5FNAf9v8-0-f3ae0aab484266fcc21aa69179a4c921)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0029_0049.jpg?sign=1738825636-JAIKybJ1iLXnEPec9gDgMnpo0alYEoR9-0-76a836e9c7cac8c70471045eba543752)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0030_0050.jpg?sign=1738825636-fkhpBFxhDcVobN1fO8Jw0ogQhDSAqjcG-0-4911904105a651dc7fd776caec46418c)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0031_0051.jpg?sign=1738825636-1zr6dZly3T4dblSHuVTM303ULbixxNze-0-51ac4983f971220324e6efcfa03941fa)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0032_0052.jpg?sign=1738825636-xtBoDq2QhjkSlldElwx5KHUjR8R5MJCh-0-e4dec5ba2c03d5b22eb1e920888234e8)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0033_0053.jpg?sign=1738825636-TD36WM05CK1RSHqMd4j4E03YpMHg71hI-0-06358a1810fa856de9fcdf17574be6a4)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0034_0054.jpg?sign=1738825636-8ZKfeYOd4xV0QCfDP9yW0VtLUJjBtEt3-0-3c2947152d2b9e69b35d55b72dc12cfb)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0035_0055.jpg?sign=1738825636-LL156Orqn0lMM51mNeJdyFEZnQp3QcuZ-0-745a8b11b5f732b5b9447e9a339f24ae)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0036_0056.jpg?sign=1738825636-JWfs5ks5D4aEAx2dB7DYDgTZTwnJ94S9-0-3b832c12b5507173cadc1e48ef95cc4f)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0037_0057.jpg?sign=1738825636-OhCMk6v0IsnIUcAs5VsekWPc3gp3pJFE-0-1400bf5931afc4d8dcf6ad2868efb3bd)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0038_0058.jpg?sign=1738825636-fKY65le6vKAo8hL7H4TJY79jydqo2bjA-0-f59b1f7808ff02f77d57cc1b27edf094)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0039_0059.jpg?sign=1738825636-nd2XqMsifKcoMqPhKIA8X6fEFUT1smGK-0-57438b11f0304eb093c35f56b88e5123)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0040_0060.jpg?sign=1738825636-hLPCL5jzZZH8dvsJ12XuGyDnyG9czWp5-0-e0b448cd325499238e912708421f7a42)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0041_0061.jpg?sign=1738825636-wR8JD8UV44czgO1YWV2nHqXNeyvslJKn-0-ef991e0b8ebab33cea7e34eb57585cee)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0042_0062.jpg?sign=1738825636-mfPpjqTMf1Y4UWfvcdfpyjQnnAWtowRD-0-c118e642f6eb50de7f5cb30e0bde44b8)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0043_0063.jpg?sign=1738825636-rp5AlEFcVjZPP2MHM87I3mcmFC5LYive-0-e0527a065345695c3523a298343cd67a)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0044_0064.jpg?sign=1738825636-oDgVXC7heuYHi1EbypP2KyWjIkt8uSR5-0-56444b03ce901fb0accef04a242ad651)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0045_0065.jpg?sign=1738825636-JB5Nvfu7hdBz45PQvb2xrZt4JG6pctXe-0-3aef89435d4d4c360d124c336002955e)
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0046_0066.jpg?sign=1738825636-IB2Fciy4v3rcQulYterGkFQW8zKGd7rL-0-980e213624cebd28f599a816f819a94f)
用法说明:
本表的角度间隔4′,若遇到4′的中间数(如34°35′40″)的角度,可以用比例法进行修正。
【例】 求30°15′的正弦值(sin35°15′)。
解:先查出sin30°12′=0.50302
sin30°16′=0.50403
取sin30°12′与sin30°16′的差值除以4,可以作为1′的正弦值。
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0046_0067.jpg?sign=1738825636-oZg0uwR9FjUdCNBH7CNGSJeuPlaM0AHm-0-23a7434bf6db43dec0bdbdaf86a73b10)
sin30°15′=sin30°16′-sin1′=0.50403-0.00023=0.50380
【例】 求24°35′40″的正切值(tan24°35′40″)。
解:先查出tan24°32′=0.45643
tan24°36′=0.45784
则,说明当角度增加1′(60″)时,正切值约增加0.00035,如角度是20′,假设20″的正切值为
x,这时可以列出比例式:
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0047_0069.jpg?sign=1738825636-Yvij7auVSICVD3IA5RHkbHH2mLKFDOMQ-0-8df190f7be18c0206441e92b3fb0dfef)
x≈0.00012
所以tan24°35′40″=tan24°36′-tan20″=0.45784-0.00012=0.45772。
【例】 已知某角的正切值等于0.5824,求该角度大小。
解:从表上“正切tan”一栏查出与0.5824相近的函数值0.58201和0.58357
0.58357-0.58201=0.00156
0.58201对应的角度是30° 12′,058357 对应的角度是30° 16′,说明当正切值增加0.00156时,角度增加4′。现在某角的正切值为0.5824,比30° 12′的正切值0.58201 增加0.00039(0.5824-0.58201=0.00039),可以根据比例式求出角度的增加值x:
![](https://epubservercos.yuewen.com/25B71A/3590276104469801/epubprivate/OEBPS/Images/figure_0047_0070.jpg?sign=1738825636-To58IUNVXQIaOys2W6hQPabmv5cXpzYx-0-c272de1b821b3fda46f645f2b405d465)
所以正切值为0.5824的角度为30°12′+1′=30°13′。