![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
第十六章 第二型曲线积分与第二型曲面积分
§1 第二型曲线积分
我们已经熟悉了“对弧长”的曲线积分——第一型曲线积分.这里再来讨论“对坐标”的曲线积分——第二型曲线积分.
l. a定义与性质
一条参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0050_0340.jpg?sign=1738819732-XGepXDimRvFzvOayJdSEu1iEgeSVEIII-0-28c700264fdeb66af636228368f9f529)
总是可以定向的.例如我们可以选择参数t增加的方向为曲线的正方向.指定了正方向的一条曲线被称为有向曲线.
设在空间某区域Ω中有一个力场
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0050_0341.jpg?sign=1738819732-zJUUGqOlKcfxTAIWDyI8kpGgDh3NmtvO-0-12b57b2803b091a5fca019e2d0cdda22)
设有一个单位质量的质点在这力场中沿一条曲线γ从A点移动到b点.我们来考查力场对这质点所做的功.请注意,在这样的问题中,应该把γ看作是从A到B的有向曲线.因为沿同一条曲线,从B移动到A所做的功,与从A移动到B所做的功,一般是不同的(符号正好相反).
设曲线γ的参数方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0050_0342.jpg?sign=1738819732-opum7JwQgALevBOC5kGLfnhu5NaPe4o5-0-a18cf128853d3b1a066d67dc6e41c95c)
给参数区间一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0050_0343.jpg?sign=1738819732-YjHiM0bufhvTKN7RNfODgGxajsgX8AoS-0-42bc121d43f2b1ecef3cc587b874df27)
于是曲线γ被分成n小段.在第j小段上,力场对质点所做的功可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0344.jpg?sign=1738819732-oYBudfU1yj3Fz6gGfCYzbQjrJ6m8z5c1-0-a52e026d00d02d25581bff79815167ea)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0345.jpg?sign=1738819732-bOmY4TNfh8FyY5OYFC50MZfSEPhFcGNT-0-e62b232cbab03989c137ac5815e57e44)
于是,力场对这质点所做的功可以近似地表示为:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0346.jpg?sign=1738819732-leP56Si6qQpifqSnlcXvBmTU9MUqLDKD-0-47828ccc6351ff136b9103eb55e302dc)
当|π|→0时,上式的极限就应是所求的功W:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0347.jpg?sign=1738819732-WU2sO6x80O5an3m6Uji4FK8e0C1vaGSV-0-4e05171b6daa2688dc2b4d1f4b4e82fc)
设P(x, y,z),Q(x, y,z)和R(x, y,z)是F(x, y,z)在三个坐标轴方向的分量,则(1.1)式又可以写成以下形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0348.jpg?sign=1738819732-f5elVCTVinwoU9CdIvcfnx5eH7fA4Qke-0-876db671b3bcd933da50caeed5c35f29)
从以上讨论得到启发,引出了第二型曲线积分的定义.
设γ是一条连续参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0349.jpg?sign=1738819732-8M0lI0HwbiAYd2tQ4xOhSW88iVoJwHBP-0-4d52664f65c885670cb049c48dec4f72)
为确定起见,我们假定参数增加方向为曲线的正方向.
定义 设γ是如上所述的一条有向连续曲线,P(M)=P(x, y,z)是在γ上连续的一个数值函数.给曲线γ的参数区间[α,β]任意一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0350.jpg?sign=1738819732-QTnFbxLhchhIDdDzp6k3baXctO7wbRRS-0-6bcf7549bd7bd6d39f7a8b369f33e1e0)
于是γ被剖分为曲线段
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0351.jpg?sign=1738819732-mJzWSbDJffMXaYKraTI2hIq241IZ9KuI-0-03afd9bd13e07ee6faebb8c43846b315)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0352.jpg?sign=1738819732-qzJ1E4Ub58HBwqkcVbTRx9lFZQIQ4Vm9-0-74f92d105ca355740ee47f485118d1e6)
在每一曲线段γj上任意选取一点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0051_0353.jpg?sign=1738819732-T6M0vjOEIgGTyyBA38u8k3WtWU3ATZUK-0-5742f4f58528401309f6705815af8965)
然后作和数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0354.jpg?sign=1738819732-6C8muzC1K6tzxk6Y9MzRVuNDuctsH0wP-0-fbfe7754e200ec0e3ad1d76ce5abe774)
当|π|→0时,和数(1.2)的极限(如果存在)就定义函数P沿有向曲线γ对x坐标的曲线积分,记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0355.jpg?sign=1738819732-pzBA254yVTj4QnRtfprh3k01m2ys6py3-0-a034ec418852119cb011a6129f991689)
用类似的方式,可以定义函数Q对y坐标的曲线积分和函数R对z坐标的曲线积分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0356.jpg?sign=1738819732-ltektnpNVRBoGy4QCbho01ofgofL5pxH-0-58ed496d7fc8103984358abef0500c52)
以上这些对坐标的曲线积分,统统被称为第二型曲线积分.我们还约定记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0357.jpg?sign=1738819732-5zY16k5D6T0hXcKkapvDKphH50RHBQQy-0-631722d20b4b83676fa888b5ccf075eb)
这积分的向量式写法是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0358.jpg?sign=1738819732-kDQ2QOqDrClVlW9qxRhxCPV9LJC4UtTb-0-a80c8eba995f20ee3964ba682190e3cf)
其中
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0359.jpg?sign=1738819732-5zHlsmGoUL2oAeN06CbBNpYuNNPbyFXq-0-a9e5ff6e711bb1ceaf3273fcc7f188a2)
如果有向曲线γ的始端与终端相衔接,那么我们就说γ是一条闭有向曲线.对于沿闭有向曲线的积分,常常把积分号写作例如
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0052_0361.jpg?sign=1738819732-TN0VFXkLuamjdMW4NuK9UeNKYx8R8bgW-0-85b0ae4e48e9f53830cc92297239fc58)
等等.
从定义容易看出,第二型曲线积分具有以下重要性质(假定各等式右端的积分存在):
1.线性
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0362.jpg?sign=1738819732-C1G7nIVCLE3QFJhLLEDYbfx7zp3zKA5Q-0-bd5d288a8f0231f6d62dcb4570310691)
——这里α和β是常数;
2.可加性
设γ1和γ2是两有向曲线,γ1的终端就是γ2的始端,我们用记号γ=γ1+γ2表示由γ1和γ2连接起来作成的有向曲线,则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0363.jpg?sign=1738819732-WplaQj9gYpPXef1YfWZK7pVw8NYeGpRP-0-05ec997d0dace440189dcbc16a039885)
3.有向性
如果用记号——γ表示由有向曲线γ反转定向而得到的有向曲线,那么就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0364.jpg?sign=1738819732-xn8QCw4gqJ3ZtQuWSbtN8BDouFGVjTdu-0-2def80ec70bcdd22f42d45431e2fde70)
注记 平面曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0365.jpg?sign=1738819732-tnMtsr5T9nQa8nGCUEPcgDhgW54q5CiT-0-8958ea97a4245190074acf346e5ed1c5)
可以看做空间曲线的特殊情形.沿这样的曲线显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0366.jpg?sign=1738819732-9qOaKtQ90FIh7QqcwtjZlBF9BrIe1nS8-0-e7c62580ce5233c4b40bc4c436a4e7d6)
——因为沿这曲线因而,对于平面曲线γ,只须考虑以下形式的积分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0367.jpg?sign=1738819732-9YyzaxjmEfmlKQcSDdxYCLAAnqU9XbOJ-0-0080fd5a24dbec9f0ed27fcf3d18b8bd)
l. b第二型曲线积分的计算
设γ是一条连续可微的参数曲线,它的向量方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0053_0368.jpg?sign=1738819732-2RIYHYIdBWfWGo1dB656NLeIz1ftMjse-0-c36a4f74f0750e0794b1dc040292694f)
用分量表示,曲线γ的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0369.jpg?sign=1738819732-VtFn1WeCBvXMZAFcKAPs83kssAPo9jig-0-79e922e54ecbbda9b444a9dc7030a109)
为确定起见,我们假定γ以参数增加的方向为正方向.
定理 设γ是如上所述的一条有向曲线,P, Q和R是在γ上连续的函数.则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0370.jpg?sign=1738819732-ak09uEi6u9ProvcfWlf6skzbsnmxl8Kx-0-919843270242e2b4ca346b835755b3b3)
证明 因为x'(t)在闭区间[α,β]上有界,可设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0371.jpg?sign=1738819732-wa9QrXxLJOatKx4fb8G8IUhPks7GijuN-0-a20291646b2d608e548548f31b4df572)
又因为复合函数P(x(t),y(t),z(t))在闭区间[α,β]一致连续,所以对任何ε>0,存在δ>0,使得只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0372.jpg?sign=1738819732-ycQ3xdjmIt1YJIQT1IUPOL5cxZgMLfG6-0-0d0d05f7e3e7e9377f9e67724efe39c8)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0373.jpg?sign=1738819732-vLShgljhxj4xNnpa59netfPj2UPR63j2-0-e187986dcd59b19ceb091e718086d477)
对于[α,β]的分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0374.jpg?sign=1738819732-3mqvZ2jQha8dJL7XxuLfw0D1YMsHbey3-0-c22e1b87de6174324c672f99f0c93896)
和任意选取的
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0375.jpg?sign=1738819732-klZxiQg92Jz7aHvzvHod0DzNMskv9BJe-0-ed91e3df07b1888362da4dd5e67a0cc6)
只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0376.jpg?sign=1738819732-q3rSbpnLcVJga3RIwyURWYRqylxueLHK-0-af1360bf9ad46a8c09bfe0719795afac)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0054_0377.jpg?sign=1738819732-vfJWLNs3tQLSlPJiRUyKMrfeWMze4Qhp-0-082793ef6a303693a8fd8d5e94a15520)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0378.jpg?sign=1738819732-hZlyqQhEUubB8zmk5SgcjXs3EgVBv4Ou-0-ca4b1354f1c041ec6d1b1121849e2e6d)
这证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0379.jpg?sign=1738819732-S6a10lumVn06oVkditbfK4S44E9de1zh-0-6763b720cc660274ade3c54f1021ace8)
至于对y坐标的和对Z坐标的另外两个积分,可以用相同的办法处理.□
例1 设质量为m的质点沿任意连续曲线γ从空间位置A移动到位置B.试计算重力对这质点做的功W.
解 设在OXYZ直角坐标系中,OZ轴是竖直向上的.则功W可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0380.jpg?sign=1738819732-iBKyFcSkOXi2xXF7h5drToQPjUl8xHyF-0-a708c0625140aac923738ec582652cab)
根据定义容易得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0381.jpg?sign=1738819732-xLf9WjSWsisHECGwD8qGnJ1rbUpWGfzb-0-38db81c5a2581bb434c5a08a815e0561)
因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0055_0382.jpg?sign=1738819732-dEuJxCo6m3fYNsT98uc3O9pT1K24Qzwc-0-b602880bf3bac841da08687e27169b92)
我们看到:重力场对质点所做的功,只与起点与终点的位置有关,与经过的路径无关.
例2 试计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0383.jpg?sign=1738819732-DZRlNVMOsqMJaQoAWSMKIfO7GZ5ZhL1F-0-1d65cfaa44fbba7b073f016d8b59c587)
这里C是OXY平面上中心在原点半径为a的圆周,E是以OX轴和OY轴为对称轴并且两半轴长度分别为a和b的椭圆周.
解 我们写出C的参数方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0384.jpg?sign=1738819732-zm7OLmwy6CsP15gqVvI786CeAH6OqP0T-0-9dff4fdaf9c99591f3c0da1a8152b069)
用上面定理中的公式进行计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0385.jpg?sign=1738819732-sgPuYbwykekMw5j0ozY2vVXvCw2dIthx-0-3fada376270eb45974657a4cdbba7f5d)
同样可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0386.jpg?sign=1738819732-7s5MTeroBmsmu53x12nXRrcN0K9G3iWq-0-10078bf6af927d147e70db9d1e9576a9)
在例2中,我们看到,对于γ=C或者γ=E的情形,积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0387.jpg?sign=1738819732-weTWuSeylyCbUKbXhBLiPMjpKg3R0U1r-0-8dfec326937f22da35a4eb98d46f00f4)
正好等于γ所围图形的面积.这一结论可以推广于很一般的情形,我们将在以后作进一步的讨论.
例3 试计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0388.jpg?sign=1738819732-O3fyN35VRzgkFMDNHyPzhYIiPHgU4Owb-0-3286933281fedff948dee5e1a901a48f)
这里C和E如例2中所述.
解 用参数表示进行计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0056_0389.jpg?sign=1738819732-hTzlJ2OAHxozJ0rSiSV88Kf7jra78SO8-0-d8c22fb5ba9d5117c40adb0d260d2b47)
同样可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0390.jpg?sign=1738819732-Y03U0NyzHGXHtpQnMIiCEOwT81zDWKW5-0-da4f78dab873e5e8161d147f02d58002)
例4 试计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0391.jpg?sign=1738819732-msTf5U4ao9530lFgRUl7QakzzfOfeu0a-0-54bff51578f9508b4e023515a3110006)
这里C同上两例中所述.
解 用参数表示进行计算可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0392.jpg?sign=1738819732-UOkPGCHH1u5OnLf56wlw9UU65lP4rHEe-0-a8244fbd906f21a3876e68ccaac3d9ee)
例5 试计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0393.jpg?sign=1738819732-3TGuRs6dJeboqQfdzb4GjgirS0fzp0uC-0-e6eb59427dbe18235f64febf3bad33f0)
这里H是k圈螺旋线:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0394.jpg?sign=1738819732-O6McCMxndTjTdJUf7wDgxObsDpCedJav-0-039c795a7cb41c6b88159c7e2fe1f4e1)
解 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0395.jpg?sign=1738819732-hsY0eLQ3OGoOqkTt3MisLjkJ054FnhM4-0-ff88c650aac4e4cb40d31decfee4541d)
l. c与第一型曲线积分的联系
考查连续可微曲线C:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0396.jpg?sign=1738819732-pgjGqmIpbBMWO9H6c3DnkT7Wxi3DQVFE-0-7e39285e8fd5636351c049d1a0eb40e6)
这里假设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0397.jpg?sign=1738819732-B9UJmCokGKYBeM3WrmIe5nWmCCy7JnYO-0-0603b0ef5d5415ec00e3d02258b6b358)
我们约定以参数增加的方向为曲线C的正方向.于是,沿C正方向的切线单位向量为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0057_0398.jpg?sign=1738819732-1v8MHwoU6eqotONMk3NmTJ7H6nuMRjNQ-0-06a4b6216e3892c8d360365117faa610)
我们把这向量的分量cosα,cosβ,cosγ叫做有向曲线C的方向数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0058_0399.jpg?sign=1738819732-r2ZwKj5unbYhkSNMJmFzUXG8KSKFXJSb-0-a9820443bd29a0e16358a9c09b2a75d4)
设函数P(x, y,z),Q(x, y,z)和R(x, y,z)在曲线C上连续,则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0058_0400.jpg?sign=1738819732-sNnazN4Zz4xZup9hpVLKVEB8WhL61Ogl-0-625d4ea0f869c574fb338e14d87af074)
这样,借助于方向数cosα,cosβ和cosγ,我们把第二型曲线积分形式上表示为第一型曲线积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0058_0401.jpg?sign=1738819732-tSwxBB0ZxW9dez4mTdndRS7WSo6Y9dKF-0-a53bb529bb53fcc72a8ad65b59fe137c)
请注意,第二型曲线积分与第一型曲线积分相比较,有一个根本不同之处:第二型曲线积分是有向的,而第一型曲线积分是无向的.在上面的公式中,之所以能用第一型曲线积分表示第二型曲线积分,是因为在被积函数中引入了方向数——当曲线反转定向时,各方向数都改变符号.