![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§7 恰当微分方程与积分因子
微分方程式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0193.jpg?sign=1738820106-CINdXcRswHoW0yTXJRfT3lUsq5GUT54W-0-4889cd971391092835b67b08655d5659)
可以改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0194.jpg?sign=1738820106-4AVwUpDbxqx8plcgXvxye3Jq3KGh9tl6-0-df0a043b78254a9316b8100a2553be1c)
这种写法的更一般形式是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0195.jpg?sign=1738820106-ha9PhB4YlJImgNyyyK307SAtQZ7bxc1o-0-f11a3fc4e599ccc12cf26c0703833682)
将一阶微分方程写成这样的形式,对于探寻初等积分方法,有时比较方便.
7.a恰当微分方程
首先考查这样的情形:方程(7.2)的左端是一个恰当的微分式.我们把这样的方程叫做恰当微分方程或者全微分方程.对这种情形,存在连续可微函数使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0196.jpg?sign=1738820106-xaZ4sqXVtYp8s6UnoXL0mCOmA3lRilxN-0-af340f4afd9a7219b2da17068aadc1af)
于是,方程(7.2)的任何一个解y=(x)必定使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0197.jpg?sign=1738820106-KXW1QzCguL2e2lineohEMN58hmMJXDr5-0-f50cb7af89b53e7a09057839d74273e3)
因而满足
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0198.jpg?sign=1738820106-H36pRFdCKT95OzqijxKbmf1PFUSffb8R-0-83d977edc324cd2e6a2df6b4066816e3)
——这里C是常数.反过来,由于(7.3)式,任何满足(7.4)的连续可微函数也必定满足方程(7.2).我们求得了用隐函数形式表示的方程(7.2)的一般解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0199.jpg?sign=1738820106-zhH3OBexScPhpOl8xRmf0ZyviYUbNZz3-0-ac45c474f49f193a4a6dc321b6057ed0)
这里C是一个任意常数.像这样的用隐函数形式表示的解,通常叫做“积分我们得到以下结论:
定理1 恰当微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0200.jpg?sign=1738820106-GzuelTLIjvlYOdBA2nxFyUrWCLWAPcQX-0-c962bb317685c14bd0d2599bb6778900)
的通积分为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0201.jpg?sign=1738820106-JIQtxW5V6snWpAWw9kjnq1vHTtgLP4zB-0-da21945c0c7ec759a4b33debe90bdb59)
这里U(x, y)是方程左端微分式的一个原函数,C是任意常数.
上节中的讨论,实际上已经解决了以下两个基本问题(特别是对单连通区域的情形):
一、怎样判断像(7.2)那样的方程是否恰当微分方程?
二、如果(7.2)是一个恰当的微分方程,那么我们怎样具体求出方程左端微分式的原函数?
因此,恰当微分方程的求解问题,可以认为是已经解决了.
具体求解的时候,常常可以通过观察直接写出原函数来.要做到这一点,需要十分熟悉微分的运算法则,并善于将微分式分组.请看下面的例子.
例1 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0202.jpg?sign=1738820106-vyWc5Hg954BOSEPgonaTbFOaYwC5wSxa-0-4d26664f668536586b3e11bc63c6e2c4)
解 将方程左端的微分式分成两组:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0203.jpg?sign=1738820106-a3e4OLUqvpW1w6kg5w0dcDvQQqUDKM8z-0-4bfecc948d46dfbdfec5d50de1b0d099)
很容易看出:第一组微分式的一个原函数是x ey第二组微分式的一个原函数是y2.因而原方程左端微分式的一个原函数是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0204.jpg?sign=1738820106-gQ80hML5HhnzSlZANc30zbJJFVkrbHj2-0-72d8b2032818f42c5f67c813a1218598)
原方程的通解(通积分)为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0205.jpg?sign=1738820106-MocDUMQtbEhSqUpP0aOEofFfv8hfNp1T-0-af5905be76c220f19e3ccd0a3d9ff707)
例2 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0206.jpg?sign=1738820106-w53TUyQmiB5qlu5GlmEf3tQ66uL4006f-0-a3bbc72a785ed49a49761c8a289123ff)
解 原方程左端可按以下办法分组
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0207.jpg?sign=1738820106-MojNnQL36V76HIFX0354KPrGHwosVCZ2-0-dd5ce5c466c52da56e8301c32b22c0ce)
容易求出上式的原函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0208.jpg?sign=1738820106-zJAkM6S1FcUjhZ6ViVtQNdSt3crPySLm-0-c8d9f5bd36c5f38b8b1de290621b33fe)
原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0209.jpg?sign=1738820106-PhjNJJ9FsXYLGw0lBwmQmjPJfzm6w3CP-0-de3f9d08d9b6fb68b1c062ba96539bcc)
以下一些公式当然是需要熟记的:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0210.jpg?sign=1738820106-GTZEIej9My5xe7KcTVrddgkbeTaiy4W5-0-b2ed84dc567f920e3ad174364158cc9c)
应该指出,观察法求原函数虽然很省事,但这方法依赖于技巧和熟练,并不是每次都能成功的.另外,除了简单的情形而外,不容易一眼就看出方程是否恰当的.如果盲目去做,可能会误入歧途.因此,上节所介绍的恰当微分式的判别法和原函数的求法.是必须牢固掌握的.
7.b积分因子
恰当微分方程要求左端的微分式凑巧是一个全微分.这种情形并不多见.对一般的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0211.jpg?sign=1738820106-5DsdmozajiEUNE8mAQf96FOSsmL69n0N-0-a3721ec6a0475ff4eca6baa08259a706)
我们可以用适当的非零因子去乘等号两边,把它化成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0212.jpg?sign=1738820106-So3WksG7W52nramdzPWMm1auhgQbocaj-0-abe34e6a38aca644384e74a585c4d31e)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0213.jpg?sign=1738820106-wqakcSNmnEaGyP1ECB7p90BuQeXxcv1I-0-996eb688c6f87975b6b55f74d5d6cef6)
如果这样得到的方程(7.7)是一个恰当微分方程,那么我们就说μ(x, y)是方程(7.6)的一个积分因子.
我们指出一个重要的事实:任何形如(7.6)的方程,都必定具有积分因子.但这一事实的证明,涉及到一阶偏微分方程理论,我们这里不能讲述.而且理论上的证明,只是肯定了积分因子的存在性,并没有告诉具体求出这因子的办法,对实际解题未必有很多帮助.下面将要介绍的,是求积分因子的某些具体办法.对于一阶微分方程来说,积分因子法概括总结了主要的初等积分法,因而给我们提供了一个很好的复习机会.
例3 可分离变元的一阶微分方程.
这种方程的一般形式为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0214.jpg?sign=1738820106-Z6WurZLzeJbPQAK7AHHFglaEliyt8FWs-0-8801ccce1b29b68d5695c1cfc28d14c8)
如果M2(y)N1≠0,那么这方程就有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0215.jpg?sign=1738820106-sD0zglavK6yF5go1JdxNGeOr9A60UDDs-0-98e2986d0e640672c448741aaad6b2a7)
用这因子乘方程两边就可将变元分离:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0216.jpg?sign=1738820106-6iOHqNjQsJ8XdoVu8oGYR3uFDEeHyYTR-0-e1da17125c51846bf6b074d8f30a1b59)
上式左端是一个恰当形式,它的一个原函数为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0217.jpg?sign=1738820106-R45iAoqglaWc5BaJa10M8f0uURUMyhFK-0-fcc2e27fab5f95b8a5018f944091e2bf)
因而原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0218.jpg?sign=1738820106-vnJ7hhvkKX1qYjwcjAuLuoNdcJKSa6Fl-0-ac51d4db2e20198a2e0f886f71c1d877)
例4 考查一阶线性方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0219.jpg?sign=1738820106-YsbYjLXxxm2UTu2szBSN4IdDSoVnBtLY-0-734ddbcc32f39ad45acd279af3cd8afe)
这方程具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0220.jpg?sign=1738820106-U3aT9LWPvBKnTFsOEkA4nPxxwhN0SQCV-0-e788734cd62a82f07a10391f6af3a575)
以这因子乘原方程,就把它化成了可积分的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0221.jpg?sign=1738820106-YMfl08siKvIarBWwXkMIf2T0Xru0OXV4-0-bcfcfce0faa7fb7fae25ee8ebda93993)
一个函数M(x,y)被称为k次齐次函数,如果它满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0222.jpg?sign=1738820106-JB3QWhQFJXmtEKazUMCpXiqUOFao0XXo-0-9a1724d8fc23207d6bdc86433adbbee4)
连续可微的k次齐次函数M(x,y)满足以下的欧拉恒等式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0223.jpg?sign=1738820106-25i8Ff3ig12qNkbGTNoGxvZC2OQiO8FK-0-eddde047ed62c702d40307643f9722d7)
事实上,只要将(7.8)的两边对t求导,然后代进t=1,就可得到(7.9)式.
在下面的例子中,我们考查系数为齐次函数的微分方程.
例5 设M(x,y)和N(x,y)都是k次齐次函数,则微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0224.jpg?sign=1738820106-TokONeGc25t4MOzX3TCCvXu7De0YzEGA-0-1aa24987ddb0d67625e696b5bc02152a)
具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0225.jpg?sign=1738820106-Fwi0QdjJTWUBxoNdwkjwo9KAUSvxceql-0-50144cfc66d6b9d2b9e41b2b80100709)
这里设xM+yN≠0
证明 首先,引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0226.jpg?sign=1738820106-spxOhAkBmxQgJYObkVHwnJU3XBgN5ldA-0-a78fe2b8e7dd222b2433d6dcf6924606)
我们来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0227.jpg?sign=1738820106-5ipYV9A5B41u5Aq2rNbF23F8pgMlgDPu-0-4e9bfaa27e287cbd7d01d01515de771b)
计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0228.jpg?sign=1738820106-F4DEY1lBEmQ9sj7ruwmw2nb4GgysWY7S-0-24ad0f9f2ca3c61983aff089ce544590)
所得两式相减,并利用恒等式(7.9),就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0229.jpg?sign=1738820106-RDTI9uivQXZFHDPJsAUqSfh52CBPKAyl-0-75fc6883e7c8b36185cfd5743d20b21d)
因而,在任何单连通区域上,Pdr+Qdy都是恰当微分形式.
例6 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0230.jpg?sign=1738820106-FieLpKl3lKkN38u2N02cmCHnx4jT1FSd-0-18086aabfc6ff31a6691ef39d99036cf)
解 上面的方程可以改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0231.jpg?sign=1738820106-go8NehBC4HSRbqq78bYqX7TndJmuDzEN-0-c9b2d6d3d7f2953b66281450354bcc56)
由例5可知,这方程有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0232.jpg?sign=1738820106-TxVNvJI71ddLhIqWSrvbruiAy7NK0Bxg-0-357239311bf02fd2be02702439e0c399)
下面,我们来求解恰当方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0233.jpg?sign=1738820106-1KhIEeJAWJAT4t5EK0H70S7bp351Ph5Y-0-cf9fe58ffe1b03e699e868cc3049eb2e)
这方程又可写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0234.jpg?sign=1738820106-357T6IsnvMSY7bAIl2HSHbA1uI0krEJZ-0-33c0ddf8ecea9af365fd329b2921d938)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0235.jpg?sign=1738820106-E2nwmlvN4bhEOPyGztsluT6arrXPaIBO-0-d7a031000626b6ac763da20611dd1868)
积分这方程就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0236.jpg?sign=1738820106-BA2ZNFo3A2qxlWqWBvGgR6LY0hiSACrA-0-15d7d51596b607c0a5dcb02de5d3b7a2)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0237.jpg?sign=1738820106-7CbMGb5087ecOz1bvp1MDGR5Qpnxv0XX-0-d2553171066b2a84ec777f925fb66c2f)
实际解题时,常常用到分组求积分因子法.下面,我们就来说明这种方法.
设是微分式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0238.jpg?sign=1738820106-IMTUvm892zwB4APW7nby48kqxiJFD5Q3-0-2dd64e72b40fd86fb7de4393d0e3dde2)
的一个积分因子,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0239.jpg?sign=1738820106-BIzuxdfAKHdG7GTwFXsUnuja7qwu1mMF-0-ff138f4fc2d9d566efe93c77824e94aa)
如果φ是一个一元连续函数,它能够与函数U复合,那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0240.jpg?sign=1738820106-uj0Eml5Op6Dydb8GdMdjSpnaZ2spt4s7-0-a86d4512ca8494689dbc7351763832b4)
也是微分式(7.10)的一个积分因子.事实上,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0241.jpg?sign=1738820106-ARxCComde1dCyClPwAs6xwV84EzkC6id-0-5114699c874aa669fbe668011910b3b8)
这里Φ是φ的原函数.
我们来考查方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0242.jpg?sign=1738820106-qEV33EuWlLq27bODLW793L9RiaHZOSs1-0-c52084438db8dcdfaf1b574e6a024f03)
设这里的两组微分式分别具有积分因子μ1和μ2,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0243.jpg?sign=1738820106-HCgJJtJXKvPceQiPfxGCMn3kbqEMBFTA-0-12444b0a538cf253ed95d0c3600553f5)
如果我们能选取连续函数μ1和μ2,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0244.jpg?sign=1738820106-DpjoshuzzWVuq0urvfnS9W0SejUsmsl3-0-51a17336cade5e2057c02392dd32913d)
那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0245.jpg?sign=1738820106-OdSS8MYCI3D58NqX5WfmBsX8FtyXbVTe-0-4b0c532447ba27ceabda3fdfd899a748)
就是两组微分式共同的积分因子,因而是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0246.jpg?sign=1738820106-fbSZfcoCGrKuT0iwFXWY3baVEhiycLeu-0-8f495e796042b409e1fd8228ccf183c7)
的积分因子.
实际解题时,采取灵活变通的做法,往往能更快地凑出积分因子来.
例7 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0247.jpg?sign=1738820106-7XRtKTKHe7CNqLipI38I2irqTDK4jr3j-0-f52a3369e699a992026e445b212dde77)
解 将这方程改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0248.jpg?sign=1738820106-5x95uBiAXn9Mo0tF0znJS9qbRvuHIcRR-0-2b24a76b6da7203d8623b9b84e46fbfd)
很容易看出一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0249.jpg?sign=1738820106-Prng6huE7utFD00j9DvWkOQ2ansrZK3I-0-aa58edc8a794552843d19053dce4212d)
用这因子乘方程两边,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0250.jpg?sign=1738820106-CphqQ3mBK4zJ4CQRPgLXyRpWgp9XFUwk-0-5ff74cee7f5c8c2933bed1fd916e322f)
我们求得原方程的通解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0251.jpg?sign=1738820106-ewSU1kLWGzycjCwcZcD6IEqFV4lyIEMO-0-82fd06a612add5d9072a7d28a2bc6a40)
例8 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0252.jpg?sign=1738820106-9l9H1daoXu9RXeBQL9239NhscPxoWKJu-0-f9cad5aa302a8db328918129f9f4839c)
解 这方程可改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0253.jpg?sign=1738820106-NqotrseXwXCgEiC916G58WxOvijsJFzB-0-ebe374c6c270de35815d17bd22393a0f)
形状如φ(xy)的函数都是前一组的积分因子.我们选择φ以使φ(xy)也是后一组的积分因子.容易看出,只要取
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0254.jpg?sign=1738820106-nosKdKKjwSoZjXZZ99ogngd3FZS2hzEe-0-5804d76fb5bdd324213ce81f21c053c1)
就能达到目的.以因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0255.jpg?sign=1738820106-ChD8iL0yUw9cAKeAbSMrqOKlQprPxvgb-0-9a3b85880c125aabe9879bfb18beb5d3)
乘方程两边就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0256.jpg?sign=1738820106-Ai81tr4ubWCn1JByo5vPWWaBZAtp9Uh7-0-49fe4da0db53027ae5ab4cd98844c837)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0257.jpg?sign=1738820106-5a1EoNeovaUdbOKsouidco51l1rVnb1i-0-902cdcc0b61888270914a1da39546b65)
另外,因为我们乘了因子可能会失掉x=0或y=0这样的
解 经检验,x=0和y=0都是原方程的解[4].
例9 求以OX轴为旋转轴的旋转面,使得这样的镜面把放在原点的光源发出的光反射成平行于OX轴的光束.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0259.jpg?sign=1738820106-rQ5m5vK3O1tM8iur2B65kXK7dpYzOe68-0-91d5dbc43e7efe150f1fe03903c48e26)
图16-21
解 参看图16-21.根据条件应有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0260.jpg?sign=1738820106-rIRYXb25XwYirGbKk5zZo5LwuyX03l7P-0-d9e7de1ab70a62f82e12b82ead05528d)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0261.jpg?sign=1738820106-IoGQF4RYLRQbmW9MEEPAfNMfAqttB1xI-0-fe976f1538a8862c32b111f14811631e)
但
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0262.jpg?sign=1738820106-XRZjUrbii5kbYBI0Hr4qEflGoOW1H6vn-0-7416db968248e4751f0526aacb28ce7a)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0264.jpg?sign=1738820106-4H9q2lRXp7KQPrKk9mCan9bnSiDoRojm-0-f50e2ab0ef9e2202ea49240f70570922)
解 这个关于dy/dx的二次方程,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0265.jpg?sign=1738820106-nTXuMelqH2NhiVfGQN1NnYaH66XcAFzW-0-3f329dbcdc020db371da40da05f7fe0e)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0266.jpg?sign=1738820106-TGyf8Auo6tg6mAvXFKzY7BerKkQbbXmp-0-e4dc9469f76e56881a1dc6d77353a088)
容易看出这方程的一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0267.jpg?sign=1738820106-eQRmRABgxYsTSxnnnllx4cyAui81925p-0-5ab007b0139b676cdafc5b2c13a8538b)
以这因子乘之,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0268.jpg?sign=1738820106-xG1tmbgRgornkScEXso0tQBnaCRMJH8e-0-05a9812926102945e5dc31eda04133cb)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0269.jpg?sign=1738820106-WUNgYAoCriySfo6UxCK7hMfO8N6Qw6vL-0-82865878401d6d129f701338f7cd9469)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0270.jpg?sign=1738820106-bDfVl0939pq0prCRJjAdY0EjvtJPGFBG-0-271850b16da064fe682c493ffb8349c2)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0271.jpg?sign=1738820106-YGwoW9tKRLz7VOm06rziABsRalV2IwPt-0-0fc293fe8bb98e8eb5d0326776d51c52)
这是以原点为焦点的拋物线族.在学习一元函数微分学时,我们已经知道拋物线具有这种光学性质.现在,我们又证明了逆命题:具有这种光学性质的曲线只能是以上抛物线族中的一条抛物线.