![复旦大学数学系《数学分析》(第3版)(上册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/631/27032631/b_27032631.jpg)
1.2 课后习题详解
§1 函数的概念
1.解下列不等式,并画出x的范围:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image041.jpg?sign=1738923639-60njuKXsXVgtlWLBOlPuBUuvcjR4NwgZ-0-abb44379f24c5c16ab457dcffbcf7261)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image042.jpg?sign=1738923639-MAYQVe8wRcJmwjhkm2PkJQO8n9BUR3Uu-0-53d8b9e64af18402686397f6f3b227cd)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image044.jpg?sign=1738923639-K6LHKixNGkCr4vrypWwTBx3aA2lmXTf7-0-1f34cc41493292058dc14d0ea775332b)
图1-1
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image045.jpg?sign=1738923639-mIPmIwVRQKtoA4GrFdyNCOf7ZUwBsSvL-0-66441a3765f49b4471ac25d2c2b98b01)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image046.jpg?sign=1738923639-XVZuLme8hUXQQnUuz3Paina8qN0FZeBL-0-31012712520dc2355d5d60255f9e9808)
图1-2
(3)或
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image049.png?sign=1738923639-7cxNTpmnZPR9x5bJ0fN5xrKFFqn07pMB-0-fecfe631310c1f2a69656a6e307fc253)
图1-3
(4)−4<x≤0或2≤x<4
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image050.png?sign=1738923639-7ShQJ7iaOT69ofhRqViOitFIQwprqPS5-0-0425c13a4fb1a939f5a7cb8149413a45)
图1-4
2.证明下列绝对值不等式:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image051.jpg?sign=1738923639-HvLgZOX4ZMqFAjoLNcKsYQEz0zFLGejd-0-de5bdde37365e5a7a11f4dfc456f695d)
证明:(1)因则
于是
.
(2)用数学归纳法证明.
①当n=2时,由得结论成立.
②假设当n=k时结论成立,即有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image056.png?sign=1738923639-iNcqIDGIjMcRuGo3k1C1vtk6qVtLI6zg-0-edbfbcbbd5aa3abc36c3f4294b981bae)
则当n=k+1时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image057.png?sign=1738923639-gDy3BiIIf2Su0SJPJZ4tJH7zYjrdeKGq-0-02fe0196e3a8cfcf2e4e9eca5575ddf7)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image058.png?sign=1738923639-sMY1wVbrUsJQev3YCDRwPOVLhOe2FIBV-0-854e8dbb2c11d6bf36821592c34b9523)
综上可知,对一切自然数n,均成立.
(3)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image060.jpg?sign=1738923639-VMe2UyERxsoT1BBv5Pqbfo8kua9d0UwM-0-280b07f4bfbba6244917f179d1e098c4)
3.解下列绝对值不等式,并画出x的范围:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image061.jpg?sign=1738923639-DsOG6NWtGphxSmh5knLSEsXNxJGsVEhB-0-5536a7f350ef5ca7990cae7001510593)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image063.jpg?sign=1738923639-p4ZCBvFlf2oJlrAqFGbZcGzPfQsMkd5C-0-a267e8ccec50048e7377752fdbbffc78)
图1-5
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image064.png?sign=1738923639-4GZv4A9h0r7eesvYd20VxhnshPzfQN63-0-799f26301e4ce44254cda7aa65495094)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image065.png?sign=1738923639-fNKKOVR9QdbFoIUVEhNIC0jKrJSgW2wA-0-36f43ef361b0e3f81e1b2bfa883fa2a8)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image066.png?sign=1738923639-WpUpFibt8sggZug5BAHuDNsjbvHgdiRn-0-59aae0dff8643da57aef0fe4c3d93adf)
图1-6
(3)当A≥0时,x<-A或x>A;
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image067.png?sign=1738923639-2uX6J6eU7JmH7erxgSzMonrijEqfBWB6-0-12957e16bb0b5e0ecfe22fbdcce8a2b4)
图1-7
当A<0时,x∈R.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image068.png?sign=1738923639-F7CTJmbRiznSODzL49ty1EhVzxSkyTYW-0-2458b34a143c23ba393b07c871b9829d)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image069.jpg?sign=1738923639-NAsvSQU27nEUAD51QBsf03Awih1aDs9r-0-9628698046f4afec09c7423d37a3344b)
图1-8
(5)原式等价于则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image072.png?sign=1738923639-9rrAeSBmKY3lT2xle2CRHUqHQEwuiXyF-0-04d7ca2131b2668bc5a0b9ec5fe9ff7c)
图1-9
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image073.png?sign=1738923639-UXZw9uMlmahswVuTbGhXSZBql6GaYrtF-0-cc8d4ac2135268f00bf76f410b4e41c5)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image074.png?sign=1738923639-buRk9a2V7qol4B1ZfXzMtiuB3XMzJSMm-0-7afd5c47e3af8118e0066f4f4f31ee6a)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image075.jpg?sign=1738923639-kTYPYZ535Gwaug78qMUrEkc45EiM57UC-0-17d7768f033017ef5bfc30466215bace)
图1-10
4.求下列函数的定义域及它在给定点上的函数值:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image076.jpg?sign=1738923639-fV7PAYTXa8dN1byPU6c45DklAAqtM0iu-0-6767b1da1c4a2144177aacbca248ffe3)
的定义域及f(-1),f(1)和f(2);
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image077.jpg?sign=1738923639-40V9p228dvOTvRQU9EjVOwClNf04lgk5-0-e6fddcd911bd8db3af4f922963b6662e)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image078.jpg?sign=1738923639-tRokDJpGE9OZCbBc5Db2kLil4jfbK3BL-0-a9030aad111b035f68fe91d3f6ab81d0)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image079.jpg?sign=1738923639-DtmKIy23kgOqwFluHPTnJvdD1NWbu97P-0-76907c38992eb725ad8b1bd962c2d62e)
的定义域及y(4),y(5);
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image080.jpg?sign=1738923639-Id4xZ21d5Xina31kkuAj5OE6XclkRaLQ-0-7b4d37854f54beb9a5c343984c50b53a)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image081.jpg?sign=1738923639-VzAJrAj7q5EV091VSlMiQIFq4nhnRUGy-0-203e239d878602d632eabe201ff9756c)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image082.jpg?sign=1738923639-K5RC6NkixZ5fOriBe93NCRIlERp7Qy8K-0-28a2f84c162365a41ebba9e63b59b189)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image083.jpg?sign=1738923639-lM4cC2dUmqF6YOky8qX4VbGNetblMdoQ-0-d32e465039dfd70f299ee2c46c0708b3)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image084.jpg?sign=1738923639-zZCCLhIiqiFYpGJVR4mXUE14xp5RorXo-0-4b3c83fca427dd5ed2023e5214cdfb0d)
的定义域及f(0),f(-1).
解:(1)函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image085.jpg?sign=1738923639-HDoB2VYg8NA3xFJYSG4PiyOLTMKSar3p-0-5e350890fd27efedac0c89fa27d35adf)
(2)函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image086.jpg?sign=1738923639-Tn1HJiwEISnLn350XSq7SVtiQRdYrOMM-0-6ded2ef4663295bcad97df8f6df9590a)
(3)函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image087.jpg?sign=1738923639-Lp5i7bDR9rVwQ2UBgvwxDQVS4HGK6phg-0-1d4832f8b77c07b3ab3260256ea34092)
(4)函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image089.jpg?sign=1738923639-lrxPaPmGYknew8ftnVcAnsTUlW8cHSLy-0-ba79e06ec3f229768ebc7ee0635fafa5)
(5)函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image090.jpg?sign=1738923639-lUpWlugMiJ7MRHxzIdpAvVj8QijB1udK-0-a45c5b7e579cee855f7f9ac29e17ac35)
(6)函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image091.jpg?sign=1738923639-AsVqcuHRgtvJQ3ZZ17Dmxa3xN86FlPx4-0-4d02a504536f86ca6c6e530225ef22bf)
5.求下列函数的定义域和值域:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image092.jpg?sign=1738923639-RWuhgd0X9ts1cPbFV1NajKuWG6dgV3HY-0-494b5f6b5fd659ccf3d1da017db74fb1)
解:(1)函数的定义域为值域为
(2)函数的定义域为,值域为
.
(3)函数的定义域为,值域为
(4)函数的定义域为
6.设f(x)=x+1,φ(x)=x-2,试解方程|f(x)+φ(x)|= |f(x)|+|φ(x)|.
解:由题意可得,即
则x≥2或x≤-1.
7.设f(x)=(|x|+x)(1-x),求满足以下各式的x值:
(1)f(x)=0; (2)f(x)<0.
解:(1)要f(x)=0,则或1-x=0,即x≤0或x=1.
(2)因则要f(x)>0,只要1-x<0即可,即x>1.
8.图1-11表示电池组V、固定电阻R0和可变电阻R组成的电路.在一段不长的时间内,A,B两点间的电压V可以看成一个常量,求出电流I和可变电阻R的函数式.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image105.jpg?sign=1738923639-rL2KXODNWFinNZTEuPIfke5ZATl9wEiq-0-36bc1049c095c6509118e81e71de300d)
图1-11
解:由题意及物理学知识,得
9.在一个圆柱形容器内倒进某种溶液,该圆柱形容器的底半径是a,高为h,倒进溶液的高度是x(图1-12),求该溶液的体积V和x之间的函数关系V=V(x),并写出它的定义域和值域.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image107.jpg?sign=1738923639-K3jNEc0BbqQ8AGQm9etCsHH8pa4YeieR-0-4b8d0bbf37be138d1a17056e88d29436)
图1-12
解:由题意得.
10.某灌溉渠的横断面是一个梯形,如图1-13,底宽2m,斜边的倾角为45°,CD表示水面,求断面ABCD的面积S与水深h的函数关系.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image111.jpg?sign=1738923639-Eue3Kx8Ac2AwtqHMEHedIoPr47WKA2mV-0-b85a7f68f39a67443a1db86bb6157f46)
图1-13
解:由题意及图可得.
11.有一深为H的矿井,如用半径为R的卷扬机以角速度w从矿井内起吊重物,求重物底面与地面的距离s和时间t的函数关系(图1-14).
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image113.jpg?sign=1738923639-ZZM9wOyV1d4gbDCLWnfW2C90hE6FznAy-0-4f8b0103ccffffbfcadbf1eff6c8b845)
图1-14
解:由题意及图可得.
12.设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image115.jpg?sign=1738923639-Vr5P1fKkqDCvSYFlaQ7b0pp3aecnqqRk-0-61afba923bac42efcea3df79ce4e5402)
求f(-2),f(-1),f(0),f(1)和
解:由题意得
13.设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image118.jpg?sign=1738923639-eqweAtU8m5lBMKyh3MBacJUcnWuW87Kk-0-6642719af588fb6285af35bec5b4ebda)
求f(0),f(-2),f(t+1),f(a).
解:由题意得
,
.
14.邮资y是信件质量x的函数.假设我们规定,对于国内的外埠平信,按信件质量,每重20g应付邮资8分,不足20g者以20g计算.当信件的质量在60g以内时,试写出这个函数的表达式,并画出它的图形.
解:由题意得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image122.jpg?sign=1738923639-fPI62YRDcjScc2TprUXZmsQepu6A1fVr-0-962ecbcc8466c65ecd52d2f96bef9d12)
函数图如下所示:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image123.jpg?sign=1738923639-ncbyBftpFLYNJiWBdJg2ohzv7oMcTuGx-0-9cd775d5da0176ebd98768a6a6d0e679)
图1-15
15.脉冲发生器产生一个三角波,其波形如图1-16,写出函数关系u= u(t)(0≤t≤20).
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image124.jpg?sign=1738923639-QfgCPGIpdF4uLatpzYjqwqmDncQa8Ups-0-537957eaa714312462209ee5a98ced1d)
图1-16
解:由题意及图可得
16.下列函数f和φ是否相等,为什么?
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image126.jpg?sign=1738923639-YUaOnyg931RhdE9mQa7I5g3TYqQqe4Hp-0-ed3d60a43cf4248884059ccf709c267a)
解:(1)因f的定义域为,故这两个函数不相等.
(2)因故这两个函数的函数表达式不一样,故这两个函数不相等.
(3)因恒成立,故这两个函数相等.
17.证明对于直线函数f(x)=ax+b,若自变量组成一等差数列,则对应的函数值
也组成一等差数列.
证明:设是xn中任意3个相邻的数
据题意,得
,
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image137.png?sign=1738923639-25Ntlp8aZmXyK8pNAlaGo6Zd70e54xiI-0-92bcf7da60eb5471b7ea61cdfcd6394c)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image138.png?sign=1738923639-UXRWbUJhCLAfpyERwsJj9AZXasSkGtbo-0-b3fb7db0988b2068a4589ab2de035343)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image139.jpg?sign=1738923639-AOAZI3EYNiV99Dv3CWkWtnZbGlu4qblc-0-f247216069328f7f89fab70c6645c8e4)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image141.png?sign=1738923639-y9nR68PQvw90ZglyIgkTCv5jltt04H2S-0-f8c782ce88cfeb188bbe70be3bd5186b)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image142.png?sign=1738923639-WwszIi6KElZ9TUwv4kaOVSh1XB3s3NaH-0-26fdbc651694416d09689f0082df6540)
是xn中任意3个相邻的数,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image143.png?sign=1738923639-6YYlGukxXYiOjutNrYI9KDHAECo3azYT-0-b1bf6d147c72383dfd1e928de3d2372d)
是yn中任意3个相邻的数,于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image144.png?sign=1738923639-d1MQ10GyWjmmTDbh4KQRY85HTUV69lSk-0-4697ee0b301ec41bcdd1eff5c9048015)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image145.jpg?sign=1738923639-ez4EE4p2ferSJE0FZJOSHhi6Vv1czXP9-0-b8f7164845b426354d552e21e9b0c379)
也组成一等差数列.
18.如果曲线y=f(x)上的任一条弦都高出于它所限的弧(图1-17),证明不等式
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image146.jpg?sign=1738923639-PbQYtYD4HTSEn1yq0J4tDLdVlt0Od3Se-0-91023ec15b41ab704ef03b63cfd0045f)
对于所有的成立(凡具有上述特性的函数叫做凸函数).
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image148.jpg?sign=1738923639-bZrh0DoqUGmj1cq6ZQfERbXGwCWQVqU0-0-51e1d69867d3cb5a18a84d90cab95207)
图1-17
证明:在曲线上任取两点连接AB取其中点
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image151.jpg?sign=1738923639-MdBTgkdftnGBUyzVxVMBaAK1LXVBmDsx-0-7d9be4baa900748b780b8f56a65f40cb)
又曲线上
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image153.jpg?sign=1738923639-Kc6C2SV22XD0f5hhKplwBNPUUxyP7Eap-0-449a44c25ccbe0c03ee17b8f28a5b658)
所对点的纵坐标为
,
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image155.png?sign=1738923639-8Y6MmBqMzCEtCaPK0SvRC9e9x2jTYRlS-0-c44fb6e5345772b6ef7e499569fc0ff3)
又曲线上的任一条弦都高于他所限的弧且
为弦与弧的交点,则
,
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image159.jpg?sign=1738923639-ei2mBu0uKisWDUnUfSlSoqE7tmSkdaKg-0-0939727d1c7196f56bb3cb67baab08c9)
对于所有的成立.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image162.jpg?sign=1738923639-3MjtEfu7TMFLttvd1RrKY81o4aHnBD6E-0-e726e673fb155a4566e99a9265c39689)
图1-18
19.讨论下列各函数在所示区间内的单调性:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image163.jpg?sign=1738923639-64UF5HVIPRYxf1IXWctfgJUza38UzWEx-0-168feea024ce17fef835b5973a2ce443)
解:(1)设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image164.jpg?sign=1738923639-eU83TpYSkARlKRxCO03QwRu9bB6YdAnW-0-8ff0f8b40c568ab0f22aa3222fbf13e0)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image167.jpg?sign=1738923639-qV9akzt1UMBuhbHTd7Rm5TZV9RLF39Cc-0-73f6aac179ea436b823682eb8463971b)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image164.jpg?sign=1738923639-eU83TpYSkARlKRxCO03QwRu9bB6YdAnW-0-8ff0f8b40c568ab0f22aa3222fbf13e0)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image168.jpg?sign=1738923639-lTVrtOWrYwtpa0kTZJyap0hcrtKdmX9v-0-d34cf110c3ff296ffbfe8b198d376eba)
故当时,原函数严格单调递减;当
时,原函数严格单调递增.
(2)设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image171.jpg?sign=1738923639-IWHNjFlhJdrvj524hIxpqKZbvrmbCTnW-0-705f13ab9c90d3a06f155485dd6e654e)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image172.jpg?sign=1738923639-nSXlmXtlp2nOwpS1QOn2ucayBaiaxdJy-0-00d73e1717f10bbe1331d1dd0e677d88)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image173.jpg?sign=1738923639-ONEtZM7lGuXX5V7KVeEyZRrWSlpGaD47-0-5a945715c83459f134fa3efd6460f6b1)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image174.png?sign=1738923639-ih9sLaUHm6Bvuj5QCybtZdJpEz6dpWts-0-b8d94259c9c17b19076092d5cfdcb933)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image175.jpg?sign=1738923639-021DTDAbOASdoMHMOUyjsaV51yWWxHKU-0-542abbadc302d4b4406a53dbd70dcda9)
故当时,原函数严格单调递增.
(3)设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image177.png?sign=1738923639-QOH545CAQCAu8WyQFkGSn649szG9KeEe-0-596726847f14ed15785f144873f48069)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image178.jpg?sign=1738923639-BWg1bvSnxDVyQglmQWezvi6tODkGKJi2-0-1f8cc01322377189f24b2f67a4995b84)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image179.png?sign=1738923639-J5hmbRJlQ8rN9ZSDNxy2jsx7zSP0QEmw-0-c805e8e35bb1888524ef2f8c5621149d)
即
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image180.jpg?sign=1738923639-rQKQSCFrI7m8AfZf4vMflLHzMd1YCxrW-0-f0ad24d807fbfe1dd8bbffa27a13db86)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image181.jpg?sign=1738923639-f456ilG0bcMI8oFk5uO12vB4egXKWdkv-0-9bc347442eb5a2d7538de53d76ea6c97)
故当时,原函数严格单调递减.
20.讨论下列函数的奇偶性:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image183.jpg?sign=1738923639-EEMIHRCpJtS7bdQebe0SZBOCuGYlahp3-0-636d70bf9ba0d39b244a5f4df73f78de)
这个函数称为符号函数;
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image184.jpg?sign=1738923639-zZVuH8b4hSxxEE8fhwool94QgZhP2KrU-0-36ac3a2d8e58a3ef446b203eb0b790ec)
解:(1)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image185.png?sign=1738923639-clRNFqCWkzXAHuUlWdUbctXbCWh5RlXk-0-af421fa2404adb6c64deeb2ce7dfdd6a)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image186.jpg?sign=1738923639-oblOSEYeewFVYRoI4f4KTUfTCVttB9Bi-0-01942d0bec4dc568d8a3925d49d355f0)
故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image187.jpg?sign=1738923639-NI1ZvHsR8SZYPyXh3dfT62VxuiZ6s6iS-0-4e4133250b2a5f5d2a558ccdda6fdbfb)
于是,此函数是非奇非偶函数.
(2)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image189.png?sign=1738923639-aPhBHEeLYagvGDgZZRAede0hoIkUR4Bh-0-ff30ba2806192ac6dc2988a59190f174)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image190.png?sign=1738923639-WK6Vh5p3keR7LNJPMm48R9IMDVfyhq66-0-8fcfcf9c37a88fb690483698534f29c1)
于是此函数是偶函数.
(3)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image191.png?sign=1738923639-A9WuGvg4fd4yhdee4nOFhRN4mfXLf97r-0-335e9df87160be4c3318fb8b6d7e29f6)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image192.jpg?sign=1738923639-Wz68ERfLfUXEhgna2iCIpyJqpwF8qHOu-0-375bc76afee8fac264e62c20a7f86455)
故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image187.jpg?sign=1738923639-NI1ZvHsR8SZYPyXh3dfT62VxuiZ6s6iS-0-4e4133250b2a5f5d2a558ccdda6fdbfb)
于是,此函数是非奇非偶函数.
(4)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image193.png?sign=1738923639-bUMgeH13e0qyP5ZY5JN0zcraWKBdVwpN-0-8e8e7f6a5725a5315eb66fef1229b283)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image194.jpg?sign=1738923639-vtJ4HDVLoMBfFRaV2ANkcsmwNglwjeZF-0-779ed1a34d4492efe471ef00c5112822)
于是此函数是偶函数.
(5)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image195.png?sign=1738923639-2Z93f3X1wv8bmpD2uou4kxa3D4sSSTKZ-0-49955ae823d7252bfeaaf11c9d8cf0d9)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image196.png?sign=1738923639-ch96iZJEcpdI3z8DNnuTAxc3sD8M42NY-0-1333ed9d2b89f0da4c877cb4a4095f61)
于是此函数是奇函数.
(6)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image197.jpg?sign=1738923639-oBAvVhK0qgNB3lZ0TT0viuml9tVELt5I-0-8885d0cdbd98b0f05065f5ad97439fba)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image198.jpg?sign=1738923639-nSJuWj2DUlAtsT3Vd2GKBHQl3ZILlefW-0-9d693c126829ca67ba2182c5ca630346)
故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image199.png?sign=1738923639-2PHT4drG90jd5EwFZ3dUfw4qAcltru41-0-a2b52e1c83af5d6c3ac0fa1323c35413)
于是,此函数是非奇非偶函数.
21.试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数与一个偶函数的乘积是奇函数.
证明:设为定义在
内的偶函数,
为定义在
内的奇函数,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image204.png?sign=1738923639-6kXWkEzcyHsWJVnfyvcahMQxskNcULM3-0-407140169d334f893a58e6dcc488de6c)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image205.png?sign=1738923639-z0Y8JpFwl4xSLkbGHVOxLgMoSQqcWq56-0-c170fbf5822cfbeee6786d35a5f09a09)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image206.jpg?sign=1738923639-q81Wf0qvapS6IWboDLCodDKQWAmJdkpa-0-875e0349451fb4a89078bad0385100cc)
从而F1(x)是偶函数;F2(x)是偶函数;F3(x)是奇函数.
22.设f(x)为定义在(-∞,+∞)内的任何函数,证明是偶函数,
是奇函数.写出对应于下列函数的
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image211.jpg?sign=1738923639-yVlFBz2s2xHGZ46XV71Oygqp15UpwRz6-0-a7f26922c06390564bea368eff6b5613)
证明:因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image212.jpg?sign=1738923639-eITAP8rlO81LYeKhiJtPGZUOdSsjlK5z-0-13ff47eecbd6a7cede018b3d20fefda2)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image213.jpg?sign=1738923639-xQwxXMmGs3AgrIGM8Q9GNdSkZDTa9k6T-0-91ebdf1387f80c658456ba34d4a74a2c)
是偶函数;
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image214.jpg?sign=1738923639-DEDPWu9mm48GWS4qKwU3oghbuLoU6jrS-0-a8fc6a6d223b1a3493763ed72726a237)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image215.jpg?sign=1738923639-bhXKDY8OZZW45wskoL6XAjpMkNAczaFS-0-1cbb7575275645290bc6f948a49f5dd6)
是奇函数.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image216.jpg?sign=1738923639-qZyMzV0h0hvk4UAJOYnXTHphhxSm7Dpw-0-27321ba5558922579f9de1763b769c67)
23.说明下列函数哪些是周期函数,并求最小正周期:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image217.jpg?sign=1738923639-sxqkGLOD1f7nTwzJAZ5N3Lf27X1snST0-0-d54bfaf4a5efa870797c5b6f76464a9d)
解:(1)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image218.jpg?sign=1738923639-BdE9yrgTbaeZQd20RNXqA75XSrSDil9H-0-1849fe2d9d91aedabb29b8ba95d76ff8)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image219.jpg?sign=1738923639-xTTRdqKN4WRuL9zZgfpWxeHtx8TC5ITa-0-457eca619508ac523e2fa1180916390e)
(2)假设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image220.png?sign=1738923639-lQfQA6VxjkcLaHaivEcuZsXzVzefZ6or-0-6c1ce9dd4e48eb9f1a4488b51c2144f6)
为一周期函数,且
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image221.jpg?sign=1738923639-ntXwtes0jtVX33MXesVEB0eOvN2os32g-0-99df2ff0bab1ba7e0f6b79e70993352a)
据周期函数的定义,对任何
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image222.png?sign=1738923639-tCiEJzB7Gi3SZbzH55laoeJqbguTe7yZ-0-0f39d8c267a8ee5c488605ad8b1f40d4)
有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image223.jpg?sign=1738923639-XKc6SvohcYWfK9bD3bC7DddsczMwnZJM-0-813e17c57150eef7ed89d6ff83eac1fd)
特别对x=0也应该成立,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image224.jpg?sign=1738923639-BGrAohIzc650ZYsGKtjSEEQwParHGaMT-0-33a7f798f2a023a46458b5674458aba0)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image225.png?sign=1738923639-jIw5dfqVPuqje2FVbH8B0cBZlNH5Cd1a-0-d887fdd0b9305f244c53a9f8cd3295b7)
又对
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image226.png?sign=1738923639-LjuYi8g8xZYWa8t7RZWuZRTlAgkOy3ZU-0-7b2cc6ea1937eaf22d386613b2196b23)
也成立,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image227.png?sign=1738923639-N4hlXcTnPKHHvxVt32Ad0u7oBj7J6E8R-0-3ef507c45382a06dee63c5a872832c5e)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image228.jpg?sign=1738923639-a1FGAUmJJngEnqBGB1GC38k8thknbDt4-0-d48a7f3fe454421ca1be9b9b62b92c67)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image229.jpg?sign=1738923639-jqbZBpDiM9aAuR67X9y7MltTceuqrOto-0-c07c614bdd9b8630020ca97ac61cafa2)
而则假设不成立,即函数
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image231.jpg?sign=1738923639-pGrBYyFmy2pZyqH5UtcWJBEkV5Dlcyxy-0-3f40297324c03653f4ba063cbe1b86b4)
不是周期函数.
(3)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image232.jpg?sign=1738923639-Vrat0SAkBofKBJ641pXrXsWdBoUfF18D-0-00a99ec19fa22ecd3df57dafb8faf11e)
的T=π,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image233.jpg?sign=1738923639-jfahPhh98M4SxM4AUG2HwR5JCSREOaEw-0-9ae7d4a8a2bd437d178cfb204b7f9621)
的T=2π.
(4)
(5)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image235.jpg?sign=1738923639-7uA7UK7Z0c899RApBuOoeAgsDHk27bX2-0-b74fd3fce621c9a0e7ded3c511643572)
故可知
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image236.jpg?sign=1738923639-QYB3mqcwTdlfcaISStk5iM6Z77HDY9yx-0-145671874b8ad806c445193a996d5853)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image237.jpg?sign=1738923639-Ttpz6T65tOWJqyIvjYbFFqmyNsVGF5EJ-0-a4f955987d2294ac6c9648f80525952f)
(6)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image238.jpg?sign=1738923639-RUkekGeObkakgI9VMmnw2TuDkK4BSEGk-0-93e322ede2f1bd8301fc09ea8f9eb2f9)
的T=π,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image239.jpg?sign=1738923639-bMKcOQgSLUcePv5ogFneDPHkhuSsBozQ-0-05d416398e8b7260831d99f006d8e685)
的T=π.
(7)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image240.png?sign=1738923639-HCtAtEZzDrU4V3AadhIVquGU7KaeNiAR-0-94d6a2a91ea34d0b4c5b2356ffc6d684)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image241.png?sign=1738923639-PihoRdimyRaGAs2feyrQ5bbnhbsvFYOv-0-d2bde30fb943b7760072a45180aa7cf7)
的T=1.
(8)
§2 复合函数和反函数
1.下列函数组能否构成复合函数y=f(φ(x)),如果能够构成则指出此复合函数的定义域和值域:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image243.jpg?sign=1738923639-d0pkLcjdjSmUVx7LAiqHIdzjDeKMMjtp-0-13919ee39e0b2b41bd000b9dbfc5f109)
,定义域为
,定义域为X,值域为U2;
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image246.jpg?sign=1738923639-VJo6TCpsHbqVi6i4EFIvj8jdcDLNRw43-0-bc10aef2a96091b63b738203a14e2b4d)
解:(1)因的定义域为
的值域为
则此函数能构成复合函数
它的定义域为
值域为
(2)因的定义域为
的值域为
则此函数能构成复合函数
它的定义域为
值域为
(3)因的定义域为
.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image261.jpg?sign=1738923639-trlkZBEGHhyHHlZjX1uaBpptP4buTVdb-0-f31bf850a8f8e4ce1087de3a2d87651f)
则此函数能构成复合函数
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image262.jpg?sign=1738923639-Nrkd6TK8l4tOnnKhnEdIIQzoHEsD2aZB-0-8483ec42c1a884b0a8e2d4cf8d314496)
它的定义域为值域为
.
(4)因的定义域为
的值域为U2.
当时,此函数能构成复合函数y=2,它的定义域视具体函数而定,值域为
;
当时,此函数不能构成复合函数.
(5)因的定义域为
的值域为
;则此函数能构成复合函数
它的定义域为
值域为
.
2.设,证明:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image277.jpg?sign=1738923639-gesOZYiOrhU7Ar3YgBVSVepxiXTTIUVz-0-b16bdbb2560ead33840a87158caf1656)
证明:由题意得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image278.jpg?sign=1738923639-IaYngT1DA6t20QuKGpGEuyBlDj1JpyBL-0-859f57d35293fbd8d2525b0331569dd7)
3.(1)设,求
(2)设,求
(3)设,求
(4)设,求f(a tanx).
解:(1)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image286.jpg?sign=1738923639-BntNMQ8O2XIcAjdix5323HQMMgbWb2rQ-0-c389563b880dbe1668abf02890bd13ec)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image287.jpg?sign=1738923639-JZNO4eEiLoawG5FMDxEXyT8wKy1fJks2-0-a7acf47d8f392dae930fc0e4bc3797b0)
(2)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image288.png?sign=1738923639-oWL2V87FbG8aulrcwpS4WqqCRpt0BidY-0-4246cf2dad8b3e1097c7db20f81c8911)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image289.jpg?sign=1738923639-JcKBxXoZ9RWK7t9CAPqv6ArDIBm96BH3-0-b61707745fb586bd485670ae1039fc15)
(3)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image290.jpg?sign=1738923639-KE4SeR20eKLFPVCzWRaif9mmpdm8qPCC-0-a7bd75976c9a6a52a77dab779c79114e)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image291.jpg?sign=1738923639-y7II9vhzbwC0u82kJLKrZcCScB1OMKcN-0-e50296b78f20fe5e6709c3678e13236e)
(4)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image292.jpg?sign=1738923639-Nkx3Qanux9m6Sg1taUqcAxeR321lLTaq-0-75fbbb2ab5f442331e6b66f986a3739f)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image293.jpg?sign=1738923639-xrcCj2yh7IC4FhfRHutoGRAwQ4zqeAbn-0-c2255e42d2370bd8bdd57e451861c5a5)
4.若.求
解:因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image296.jpg?sign=1738923639-EVDIuSIBWrL1AT6Idzb5TeI5okTGcZfB-0-1ac3016c85cd316f3f4c2dd603267269)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image297.jpg?sign=1738923639-JAcC6kafpnerItfVEL7LJu38b6iPrlJL-0-1afd8c25978b23a9b55b0c6a6d5e392c)
5.若,求
解:因
,
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image301.jpg?sign=1738923639-RnfaIl1UcO416QE9yRxzA2R5EhyvYpCI-0-07abb02f581399a801d4b4ce5d3fb047)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image302.jpg?sign=1738923639-JZjiIQHBs04FRlxd9qwSIgFznbwQCFlf-0-32b8b1c270f802e5ed0907eb5818e272)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image303.jpg?sign=1738923639-d9hcS4ydcJYo0lC4u7SEwAb7UGidi5YV-0-38c8a738ed506b80331f5e7d0df26f47)
6.设,求
解:因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image306.jpg?sign=1738923639-gUkfPl3lD0ZORM4iIMNQjDZBnC4ThvX8-0-88704b6b56b2eed62e910d3bfa1a6e34)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image307.jpg?sign=1738923639-SvdwaY50lY5WmXIKgVJdAx7Eg2hcopXd-0-e1fee292610c0653434f60dca1d7d5a8)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image308.jpg?sign=1738923639-B3zBNubBEEwwWr1Z9g4EfpJTJf7yumL9-0-588a75b3d239c075ffbb4a9bec4d4692)
7.求下列函数的反函数及反函数的定义域:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image310.jpg?sign=1738923639-6wwRZDobR7rSWEQfG0COa6Tt23MmPRl9-0-2887f34e632cb07e1a567f568fb21d13)
解:(1)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image311.jpg?sign=1738923639-VwcZ0Puqzlp49IQIGQMpONOOcYRemOD6-0-8fd4d608202e02d28d1f1dc6760a0f96)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image312.jpg?sign=1738923639-QcUYNHQMCLgYhdVmyVY11MFet1NlC1Kh-0-7e7358b811f480512c29d245458603f8)
从而此函数的反函数为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image313.jpg?sign=1738923639-9IohdRz9KtJXtBEVrpE9so7Yo6PHhlWI-0-7f0a93ac65404868dacf12c585b130f9)
(2)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image314.png?sign=1738923639-YyoueeDX3MBSmuMzZIyO6njZQVjz2pLo-0-228d9ff2b83665854e7e24df1d68864d)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image315.png?sign=1738923639-08yrwQ4TaYo2FyESD0zH3eES0mRsb8e3-0-981e3a7a2ea3ae901d55353c266a4523)
从而此函数的反函数为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image316.jpg?sign=1738923639-VTR4FaGQhXqSzHkPnUKxgpTsNdHb8q8Y-0-47da166af2248658118cbca4377924a3)
(3)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image318.jpg?sign=1738923639-K9zPviMj3qXbLDluMvjmSRBGe1Thm7zz-0-9c6fbfd52d9a1039700fe1be933feb3f)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image319.png?sign=1738923639-CJ8vWCUTaQv56ZIVteGHvMI9gXse8wrH-0-00a8d11b538cd88accbf22d2aafd6fe4)
从而此函数的反函数为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image320.png?sign=1738923639-Q2ySiPxGfVD7605oDphv6aw9NpbDoHUK-0-9e085ad885900d3589f21f6e94c848c7)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image321.png?sign=1738923639-2LM4Bei6QgspTxBa8pQpQNyPvoU5WQj5-0-a90d0b268e7c04cda565b596c289cf89)
(4)因
,
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image323.jpg?sign=1738923639-ZgHSKh3nT7KbdMfjcmYJSGpWa7VJtIoB-0-716b0020b14256d0cb9fb03eccc1e611)
从而此函数的反函数为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image324.png?sign=1738923639-dkCL25HYglz7NHYG2tJySO3QSizRkBIt-0-b6effec8f20368d446395b1956b4deaa)
§3 基本初等函数
1.把下列在[0,1)上定义的函数延拓到整个实轴上去,使它成为以1为周期的函数:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image325.jpg?sign=1738923639-fuk04HMD7JcnBTc39Xesy1EkLVkqvG54-0-d76f1775aae1429af695881fa8e48c1b)
解:(1)延拓后的函数为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image326.png?sign=1738923639-aeHcgHSRKfer7QqxsbvFv77YciMJ4A1j-0-97e041fe55490275d815a337ae69e8c5)
(2)延拓后的函数为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image327.png?sign=1738923639-fqqV1kzeWCbLLPVUSReWu3hKwEO7x8w2-0-d3025cb6cce57a98a1db3142e6ef65ce)
(3)延拓后的函数为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image328.png?sign=1738923639-mqY2a3mKVTZFdbFGlYCe7AdNlmOSMLrV-0-7ee1c9d213f3f0b6c9e109335074fdcb)
2.把下列在[0,+∞)上定义的函数延拓到整个实轴上去,(a)使它们成为奇函数,(b)使它们成为偶函数:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image329.jpg?sign=1738923639-DQyy4I0Drq4LAI8R3k5etwgVjW7yajdm-0-7f414730017ab473add48b569c78039b)
解:(1)延拓后的函数为:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image330.jpg?sign=1738923639-VfC9FGyxpVJAcMlv4MVt6WT0Va6930jF-0-79b32871b97dde68a9663ecceb86aea2)
(2)延拓后的函数为:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image331.jpg?sign=1738923639-dHCC0CSLC2JUaBNgUUJQfBjQ2f9rBUhR-0-320ebb217161a95cb91409b3fd58b78d)
3.作下列函数的图形:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image332.jpg?sign=1738923639-woQFX3nsN36y0EEqiXx4IwR8Voq4VieL-0-9e9d227cc003df03297662ce06baa88b)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image333.jpg?sign=1738923639-C0bh8l133ITNv71wxQPcDnXTFJN3QoYW-0-d3fd1290075d5976ce7d86bb5c653333)
图1-19
4.作函数的图形.
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image335.jpg?sign=1738923639-hXZ4pur2tBD9CAc7Fri2pvqIFYVYMF4c-0-8460e7cd6cfc34aa83dbcbbe406a7209)
图1-20
5.作函数的图形.
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image337.jpg?sign=1738923639-0UNU46LUuieWTqwSmd4ACXxGVot8V7AX-0-365b02aacd60be68dd582617e976563b)
图1-21
6.一个函数是用下述方法决定的:在每一个区间n≤x<n+1(其中n为整数)f(x)是线性的且,试作此函数的图形.
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image339.jpg?sign=1738923639-ZSZO8cRm7G2TzHnb0NtbSsFF1WESx774-0-4d285e950d2f37b721b151b22d3004c0)
图1-22
7.作函数的图形.
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image341.jpg?sign=1738923639-0FylpCberXMZddGH3TiUrIZgx9PhaZpb-0-0e308ab4d6689e30f48f2a7ffe79c1eb)
图1-23
8.若已知函数,作下列函数的图形:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image343.jpg?sign=1738923639-kSbNznfEShrxe6a9AOrgGyyxgSJwOsp8-0-b6579a8caa6b943f0cad9232b13e9264)
解:(1)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image344.jpg?sign=1738923639-9K7l3hy6AXV85LGbayOZwcYXXAQrQ3UT-0-cba347ef8b6def15baaa7de653e54cce)
图1-24
(2)(k,b>0)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image345.jpg?sign=1738923639-LstveYcNJlq8guj7ccP3nE0G7vEqHzjA-0-a0e49349385cc671085f55c29deb18aa)
图1-25
(3)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image346.jpg?sign=1738923639-dSK1k7v0ZprOcuxJmMSzRowzxzjrpCrW-0-e5b212ea4fb6cd0829cbe4992b9f95cb)
图1-26
9.若已知函数的图形,作函数
的图形,并说明
的图形与y的图形的关系.
解:设的图形如下:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image351.jpg?sign=1738923639-kFjlStjSMo7YNOXQZzGl1AdxWh9lrpxK-0-754e31ee872213b67d3b47dd17dad592)
图1-27
则y1的图形为:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image352.jpg?sign=1738923639-NMx1T2JjVetIMKwrM9IKFwV1rvhpww0k-0-ed88e3526dc4d913508850ab45535c6d)
图1-28
则y2的图形为:
图1-29
则y3的图形为:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image354.jpg?sign=1738923639-1Ydj0T8sf9chgyDCMSjny4KaRRopW5JO-0-c6a0b095c4f27ef765ed2414571542d2)
图1-30
y1的图形当时与y的图形关于x轴对称;当
时与y的图形一样,
y2的图形与y的图形关于y轴对称,
y3的图形与y的图形关于原点对称.
10.若已知的图形,试作函数
的图形,并说明y的图形与
的图形的关系.
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image361.jpg?sign=1738923639-CfwF7FDhSVKsFfEvfz2HtGXO7nOmQ9RT-0-84f9fd0b0727b5cb5779b7ef7847fb92)
图1-31
11.对于定义在[0,π]上的函数y=x,先把它延拓到[0,2π]使它关于x=π为对称,然后再把已延拓到[0,2π]上的函数延拓到整个实轴上使函数成为以2π为周期的函数,并作出它的图形.
解:所求函数为:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image362.png?sign=1738923639-YkUssCy32R3l79v2DuJq0SXnd9VWbVl7-0-ef781e44d6c650c01364a837a6cab607)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image363.png?sign=1738923639-l1yvb0uzcz40bWq35ozc6CBN06vQeAuZ-0-239c3978a1c92e93c0131234e60f31f5)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image364.png?sign=1738923639-bLYs73bK0abuXw9UA7SF5kX5SJhjAFRs-0-8aa20a3b07599a55b5b8c28fb32bba6f)
图1-32