![磁流变液智能制动技术及其应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/730/43806730/b_43806730.jpg)
3.2 磁流变液制动器的温度场仿真分析
3.2.1 瞬态温度场仿真数学模型
磁流变液制动器在制动过程中内部热量集聚会导致其温度急剧上升,降低制动效果[2-4],基于ANSYS Workbench仿真平台进行磁流变液制动器瞬态温度场仿真分析。在磁流变液制动器中取一微元六面体,根据傅里叶定律可知在某时刻微元体六个面上的热量变化可表示为[5-7]
![](https://epubservercos.yuewen.com/782352/23083817209817106/epubprivate/OEBPS/Images/59_01.jpg?sign=1739289224-AfFMHCKIngWFouoyD4Ic9LsoQzU2n3T8-0-8e2afb41c80d0235610a5e8747aef76a)
式中,dx、dy、dz分别为所选取微元六面体的长、宽、高;λx、λy、λz分别为微元六面体在x、y、z三个方向上的导热率;Qx、Qy、Qz分别为某时刻沿着x、y、z三个方向流入微元六面体的热量;Qx+dx、Qy+dy、Qz+dz分别为该时刻沿着x、y、z三个方向流出微元六面体的热量。
根据能量守恒定律,单位时间内该微元六面体的热量变化等于其内部产生的热量加上外部流入的热量,再减去流出的热量。结合式(3.2),微元六面体的瞬态温度场微分方程可表示为[8]
![](https://epubservercos.yuewen.com/782352/23083817209817106/epubprivate/OEBPS/Images/59_02.jpg?sign=1739289224-nGOPW67WQZh4Yxb3FMSChNok2cAJs7fv-0-03884a5de78d404416207604f69a6679)
式中,ρw为微元六面体材料的密度;cw为微元六面体材料的比热容;Tw为微元六面体的瞬时温度;为微元六面体单位体积的发热功率。
磁流变液制动器处于制动工况下,其内部产生的热量主要来源于磁流变液的剪切发热和线圈的工作发热。制动盘与磁流变液之间剪切摩擦产生的热量可以等效于车辆减少的行驶动能,其是磁流变液制动器的主要热源。在车辆制动t时刻、Δt时间段内,车辆行驶动能的减少量ΔE(t)可表示为
![](https://epubservercos.yuewen.com/782352/23083817209817106/epubprivate/OEBPS/Images/59_04.jpg?sign=1739289224-JnB22fqAkCLXDDfzAJXgthbeOWga5zGH-0-7e91d2aea51669017344d4ca0dedce84)
式中,v0为车辆制动初速度;a为车辆制动减速度。
结合式(3.4),在车辆制动t时刻、Δt时间段内,车辆的动能损失功率Pm可表示为
![](https://epubservercos.yuewen.com/782352/23083817209817106/epubprivate/OEBPS/Images/60_01.jpg?sign=1739289224-tVPt5zVXLPZmoqtiBYs0Znnyv7xj3diK-0-3f3537e709c090a1d1e124153f0a8707)
根据欧姆定律可知,磁流变液制动器工作时线圈的发热功率Pc可表示为
![](https://epubservercos.yuewen.com/782352/23083817209817106/epubprivate/OEBPS/Images/60_02.jpg?sign=1739289224-tNKQ8eluyvnywmy1qBRFP2LgXzM2xZ4p-0-de8e141a26c12b41ae6ef66a77525f2d)
式中,I为线圈电流;Rc为线圈电阻。
根据所设计线圈的结构特点,其电阻Rc可表示为
![](https://epubservercos.yuewen.com/782352/23083817209817106/epubprivate/OEBPS/Images/60_03.jpg?sign=1739289224-fmTCDIha86GcgepW6XpQXRz1v81uM2VM-0-94296da9bfa72f04f4ee38c14538c0cd)
式中,N为线圈匝数;为线圈导线的平均直径;Sc为线圈导线的横截面积;ρc为导线材料的电阻率。
磁流变液制动器工作时,由于温差的存在制动器壳体表面与周围环境间存在对流换热。根据牛顿冷却定律,对流换热功率Pa可表示为
![](https://epubservercos.yuewen.com/782352/23083817209817106/epubprivate/OEBPS/Images/60_05.jpg?sign=1739289224-wFkrFe5eOKQp4k1zPU42QFADNYzf0DZj-0-743ba83c2d3acdb2eb59f89d11a0d563)
式中,ha为对流换热系数;Su为制动器壳体表面的换热面积;Tu为制动器壳体表面的温度;Te为周围环境的温度。
结合式(3.5)~式(3.8),根据能量守恒定律可得其功率表示形式为
![](https://epubservercos.yuewen.com/782352/23083817209817106/epubprivate/OEBPS/Images/60_06.jpg?sign=1739289224-StA4bk2RiTbqHOWekIT5JwmLESl1r2bN-0-96109dcb941f02391ff80d1534ad4249)
式中,ci、mi、dTi/dt分别为制动器各部分材料的比热容、质量和温度变化率。