复杂电能质量智能分析技术
上QQ阅读APP看书,第一时间看更新

2.5 仿真与实测信号压缩实验

为全面验证本文方法的电能质量数据压缩能力,采用仿真信号与实测10kV配电网电能质量信号分别验证该方法的压缩效果。

2.5.1 仿真实验

参考文献[5]建立电压暂降、暂升、中断、尖峰、切痕、振荡、谐波、闪变8类常见电能质量信号的模型。为保证ADN内电能质量分析需要,仿真信号采样率设置为25.6kHz。记录的电能质量数据能够满足最高频次100次谐波和10000Hz以上高频振荡分析需要。表2-1为不同噪声环境下,采用本方法压缩8类仿真电能质量信号的压缩效果。通过均方误差百分比(PRD)分析信号恢复后与原始信号相似程度,通过压缩比(CR)衡量信号压缩能力[2]。其计算公式如下:

式中,di)是原始信号;fi)是数据压缩后重构得到的信号;N为信号采样点数。

式中,Sin是原始信号数据量;Sout是压缩后数据量。

分别生成信噪比为30~50dB、20~30dB范围的仿真信号,每类不同噪声环境下随机生成100组,记录时间1s。其压缩结果见表2-1。

表2-1 本方法压缩效果

由表2-1可知,本方法在低噪声环境下具有良好的CR与PRD;在高噪环境下,由于噪声影响,PRD有所提高,且由于存在少量正常信号被误识别成故障信号,导致CR略有下降。在各类电能质量信号中,谐波信号可通过第1周期信号记录整个谐波信号,同时,额外统计实验证明,本方法能够有效监测新的谐波的发生;闪变信号各周期之间均有波形变化,本方法不能压缩,但是能够有效地记录所有波形。从总体压缩效果看,本方法能够有效保留扰动起止处及不同波形畸变处的变化情况,即能够保留电能质量分析所需信号细节,因此能够满足ADN下电能质量信号压缩需要。

表2-1为高信噪比信号采用本方法与参考文献[1,3]方法的压缩对比结果,实验信号采用与表2-1相同信号。由表2-2可知,由于SNR较高,OCSVM未参与压缩进程,各类方法均能压缩相关信号。采用本方法与采用标准OCSVM压缩的方法相关性能一致;参考文献[1]方法PRD略高于本方法,但本方法CR更高;参考文献[3]方法具有平滑降噪环节且使用整周期相似度分析,因此,CR与PRD均低于本方法。综合分析,本方法具有较高的压缩性能,且保留了更多的原始信号细节。在各类常见扰动中,除闪变外,各类常见电能质量数据均可获得很高的CR;每类电能质量均可得到较好的PRD值,保留了扰动信号特征,能够支持后期的分析需要。

表2-2 压缩效果比较(SNR≥30dB)

表2-3为30~20dB的噪声环境下压缩性能分析,信号仿真生成,每类100组。由于参考文献[1,3]方法无法应用于高噪声环境下,因此,表2-3中只比较采用不同OCSVM参数时的性能,包括PRD、CR与电能质量漏记录、误记录的实验结果。由表2-3可知,由于本方法采用的OCSVM参数偏向于强调准确记录电能质量,因此存在误记录情况(3次),CR有所下降,但是,采用本方法参数无漏记录,且误记录次数少,符合ADN内电能质量数据压缩记录需要。

表2-3 不同OCSVM参数压缩效果比较(SNR<30dB)

综上统计实验可知,本方法能够实现高噪声环境下的电能质量信号记录与压缩,且具有良好的PRD与CR,更适用于ADN的电能质量记录需求。

2.5.2 实测电能质量数据压缩实验

为进一步验证本方法对实测信号的压缩效果,采用IEEE波形库[6]与葡萄牙电网实测电能质量数据[7]验证方法的有效性。图2-3为IEEE波形库中典型电能质量信号原始波形、压缩示意图与恢复后波形,信号采样率为每周期128点,在暂降起始处存在微弱振荡成分。

由图2-3可知,本方法能够有效地压缩与恢复实测信号,恢复后信号PRD值为1.40%,CR值为1.80。压缩信号能够完整、准确地保持原始信号中的暂态振荡、暂降起止处、暂降过程中等电能质量信号细节,能够支持后期的精细化分析需要。

图2-4为另外4组电能质量信号电压波形图,表2-4为各组数据压缩后的相关PRD值与CR值。图2-4中葡萄牙电网电能质量数据采样率为50kHz。由噪声估计环节确定,实测信号的信噪比为43~48dB范围。由表2-4可见,本方法还原波形与原始波形非常相似(PRD值低),实测数据压缩比虽然相对仿真数据较低,但其主要原因是由于实测数据记录周期数相对较少。整体看,本方法仍然起到了较好的压缩效果。

图2-3 典型实测电能质量信号压缩与重构效果

图2-4 实测电能质量信号

图2-4 实测电能质量信号(续)

综上实测数据实验可知,本方法可有效应用于实测配电网数据压缩,满足实际工业要求。以上实测信号信噪比较高,未采用OCSVM参与压缩,未来实际工作中,将根据电能质量监控设备采样率等因素,具体修订OCSVM相关参数与ND阈值等压缩所需参数。

表2-4 实际电能质量信号压缩效果