![金融随机数学基础(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/953/48167953/b_48167953.jpg)
1.6 有界变差函数及Stieltjes积分
1.6.1 有界变差函数
有界变差函数在后面介绍随机积分与伊藤公式时将起到重要的作用,本节首先介绍有界变差函数的定义及性质.
定义1.6.1(有界变差函数) 设f(x)在[a,b]上有定义,将[a,b]分为n段,得一划分T,如果,则称f(x)在[a,b]上是有界变差函数,记
,称其为f(x)在[a,b]上的全变差,其中
表示对所得划分取上确界.为了定义函数f(x)在无界区间[a,+∞)上的全变差,我们要求
,并规定
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/21_10.jpg?sign=1739285518-xcolXAl2bvOkRMDulrTHLc7kTTuYAvW3-0-654b2f078d8608f703613c849a540512)
注:连续性对有界变差不起任何作用.
例1.6.1(连续函数不是有界变差函数的例子) 设
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/21_11.jpg?sign=1739285518-mimw8OfQBKg8LI7JzvSjXrKRYuT7bmfm-0-8cb3c980ae03c99de6a579e23399359b)
显然f(x)是[0,1]上的连续函数,对[0,1]按下列方法划分:
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/21_12.jpg?sign=1739285518-0Y0WIswrjVatbOuBCvWkYiL4Hu3LgbU1-0-9489846d3b5541a39ea4b1bf1ab07ac3)
则,故
,从而f(x)不是[0,1]上的有界变差函数.
下面介绍几个有界变差函数的判定定理.
定理1.6.1 设f(x)在[a,b]上每一点均为有限值,且f(x)为单调函数,则f(x)在[a,b]上为有界变差函数.
证明 对[a,b]的任一划分T,不妨设f(x)为单调增加函数,对任一划分T:a=x0<x1<…<xn=b,则有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_01.jpg?sign=1739285518-OS8jtr2dlPqiMAgH4wejU7cNkNhhT619-0-2300003972d6bbad569bbb048a6e89c7)
故,即
=f(b)-f(a)<∞.■
定理1.6.2 如果f(x)在[a,b]上满足如下条件,则f(x)在[a,b]上是有界变差函数:可将[a,b]分为有限个区间[ak,ak+1],其中k=0,1,2,…,m-1,a0=a,…,am=b,使f(x)在每个[ak,ak+1]上单调.
证明 对[a,b]的任一划分T,在T中加入分点得T′必有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_04.jpg?sign=1739285518-AbyvrcDQVEErXWX4DQsl36a47mCB3ZFU-0-248770a2b2b92dec6901f481cec7a141)
将所有ak加入划分T中,设得到的新划分为T′,则有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_05.jpg?sign=1739285518-iUPANdKDr66nW4wlsxDOdVw1ginkn9II-0-924f8cc69df969fdb8786809893e835f)
故
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_06.jpg?sign=1739285518-vW6OpfNB8Nh3pYA4KsO0pzVpGbYZoBtp-0-44d545d4bd625ea50fb7f6191729bed0)
从而f(x)是[a,b]上的有界变差函数.■
定理1.6.3 如果f(x)在[a,b]上满足Lipschitz条件,则f(x)在[a,b]上是有界变差函数,且
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_07.jpg?sign=1739285518-uTfzODeF37pyVYY7vGkaArwDxYiEkjvl-0-8e6ea1c764914ff73cdd2985a82eacca)
证明 因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_08.jpg?sign=1739285518-aVyaRROOnsURCxgiN1mo081IxldOdRvU-0-9ed8c2d00c73aeda00f704c4f477b549)
从而<∞.■
定理1.6.4 如果f(x)在[a,b]上可导,且≤L,则f(x)在[a,b]上是有界变差函数.
证明 由
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_11.jpg?sign=1739285518-0NeBKgy0I9Lz8pJtD8w5JnaTQX4VNLmI-0-0faa1c1fb2d387b9bd820ec914a5f15b)
知结论成立.■
定理1.6.5 如果f(x)在[a,b]上可表示为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_12.jpg?sign=1739285518-FZcHkeUrWNdQtDRzjaeyFZfqXXB6Sd1E-0-d8170f620310d493fb9a02fae96766dc)
其中,,则f(x)在[a,b]上是有界变差函数,且
.
证明 因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_15.jpg?sign=1739285518-I1lVw5mzJTD8crrDbI8rYnlFlxaFchdD-0-91e1414749963da62c79f885d225d54b)
故,从而结论成立.■
定理1.6.6 任一有界变差函数是有界的.
证明 ∀x∈(a,b),则[a,x]与[x,b]构成[a,b]的一个划分T,从而有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_02.jpg?sign=1739285518-qI7YzZxda0jtKU9dJ2sq63e9qGLei1iK-0-24f8dc009ae08a5d5acb38b2b6e55bc3)
所以
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_03.jpg?sign=1739285518-0J1Keba5jxxkO2SA4S4E7hGI9EVr6UiS-0-af607dee88aed8b2e2b7f236b8864870)
定理1.6.7 任意两个有界变差函数的和、差、积仍为有界变差函数.
证明 设h(x)=f(x)+g(x),则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_04.jpg?sign=1739285518-auPJUC7tmSCEyKXC9A5UW1k1Eu4mGnBO-0-f76011e1b1537194514155060d83615a)
从而
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_05.jpg?sign=1739285518-G5mKcocthyhUH8a6zHRV2X6K3SSKGcDn-0-a4d77fe372c3be8966f6e5bb9cd584aa)
令P(x)=f(x)g(x),因为≤M,
≤M,所以
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_08.jpg?sign=1739285518-62SZp7rf496ESPXbfMsBpfsZgRUBMsL5-0-21bdf67d3e27af17096b5f89902bf463)
故
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_09.jpg?sign=1739285518-xkES4MnAccKoNZiCxv7HR3h0vLIIXejq-0-08e064fd716ec980f15f84c6a5a20514)
定理1.6.8 设f(x)和g(x)均为有界变差函数,且,则
也是有界变差函数.
证明 只需证明是有界变差函数即可,因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_13.jpg?sign=1739285518-fTbA21PAtHJZVVgD2LHwvuSi8rGaEagC-0-0109ff067015a344ed576810f4293345)
故
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/24_01.jpg?sign=1739285518-XKLXxJb3jJdv0Ohe3bZ96qdEP3aczKrY-0-aa084fbd5df554b5596756a5d8f60522)
从而是[a,b]上的有界变差函数.■
定理1.6.9 若f(x)在[a,c],[c,b]上均为有界变差函数,则f(x)在[a,b]上也为有界变差函数,且.
证明 对[a,b]的任一点c,如果c不是分点,则将c加入使其成为分点,那么
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/24_04.jpg?sign=1739285518-qIqub1aMxoeb2q0as8vh7DyZM4meF84p-0-1fbdd701969a2016f59c0bbf0d0c6109)
故<∞.
另外,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/24_06.jpg?sign=1739285518-uoC1zyeDFzAcaoZJh2YU6ksKhGPmHXly-0-8018e897ab61e0dfb729955252ead8ce)
故,从而
).■
定理1.6.10 如果f(x)为[a,b]上的有界变差函数,则是[a,b]上的增函数.
证明 因为对任意x1<x2,,从而
.■
定理1.6.11 f(x)在[a,b]上为有界变差函数⇔∃有界单调递增函数F(x),使得∀x′<x″,x′,x″∈[a,b],均有≤F(x″)-F(x′).称F(x)为强函数.
证明 “⇒”,若f(x)是有界变差函数,令,则g(x)是有界增函数.则
.
“⇐”,由=F(b)-F(a)知,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/24_16.jpg?sign=1739285518-JGDCywBVvTz8MbmfruLpwYcjvVQ1aMfz-0-f1da3f069a253025678eb264905a9550)
从而f(x)是[a,b]上的有限变差函数. ■
定理1.6.12 f(x)是[a,b]上的有界变差函数⇔f(x)能表示为两个有界增函数的差,即存在两个有界增函数g(x)和h(x),使得f(x)=g(x)-h(x).
证明 “⇒”,设强函数为F(x),令g(x)=F(x),h(x)=F(x)-f(x).则f(x)=g(x)-h(x),g(x)是有界增函数.往证h(x)也是增函数.∀x1<x2,因为
h(x2)-h(x1)=g(x2)-f(x2)-g(x1)+f(x1)
=[F(x2)-F(x1)]-[f(x2)-f(x1)]≥0
故h(x)是有界增函数.
“⇐”,令F(x)=g(x)+h(x),则F(x)是有界增函数,因为∀x1<x2,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/25_01.jpg?sign=1739285518-C9Al90V0jv0uAqWA4ew19eHjZyYjNgXM-0-7f1a298f32afdb66663acd1fd478c7c6)
故F(x)是强函数,从而f(x)是有界变差函数.■
定理1.6.13[a,b]上的有界变差函数f(x)在[a,b]中任一点都有左极限与右极限.
证明 因为f(x)=h(x)-g(x),由于h(x),g(x)都是单调函数,故h(x),g(x)的左、右极限都存在,从而f(x)在[a,b]中任一点的左、右极限都存在. ■
下列结论的证明是容易的,请读者自己完成.
定理1.6.14 若f(x)是[a,b]上的有界变差函数,且f(x)在x0上连续,则g(x)=也在x0上连续.
定理1.6.15 若f(x)是[a,b]上的有界变差函数,且f(x)在[a,b]上连续,则存在两个连续增函数h(x),g(x),使得f(x)=g(x)-h(x).
1.6.2 Stieltjes积分
下面我们介绍Stieltjes积分,它是由荷兰数学家Stieltjes建立的一种积分,故称为Stieltjes积分.它是Riemann(黎曼)积分的一种推广,在Riemann积分中,将dx推广为dg(x),且g(x)不一定可微,就成了Stieltjes积分.本节我们将介绍Stieltjes积分的定义及性质,在随机变量的数学期望、随机积分等内容中我们将大量使用Stieltjes积分的相关知识.
定义1.6.2(Stieltjes积分) 设f(x),g(x)是闭区间[a,b]上两个有界函数,任给[a,b]一个划分
T:a=x0<x1<…<xn=b
和任意取点ζi∈[xi-1,xi],i=1,2,…,n,作和,记
λ(T)=max{Δx1,Δx2,…,Δxn}
若存在,且极限I与T的划分及ζi的选取无关,则称I为f(x)关于g(x)在[a,b]上的Stieltjes积分,记为
.
注:dg(x)不是g(x)的微分,g(x)可能不可微.
有时为了区别Riemann积分,将Stieltjes积分记为.
下面我们讨论Stieltjes积分的可积性.
用Mk与mk分别表示f(x)在[xk-1,xk]上的上确界与下确界.记
s(T)=∑mkΔg(xk),S(T)=∑MkΔg(xk)
分别为划分T对应的大和与小和.
当g(x)为[a,b]上的增函数时,s(T)和S(T)与黎曼积分的达布大和与达布小和有完全一样的结论.
定理1.6.16 若g(x)为[a,b]上的增函数,f(x)在[a,b]上有界,则存在的充要条件是对任一划分T,有
=0,其中ωk=Mk-mk.
定理1.6.17 若f(x)在[a,b]上连续,g(x)是[a,b]上的有界变差函数,则存在.进一步,设g(x)=g1(x)-g2(x),其中,g1(x),g2(x)为增函数,则有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/26_04.jpg?sign=1739285518-8NO7IDV2K1zMPAg3aCnPj7vbLib7kC1h-0-3a95886ea8f48044d2ebb1ca31fbe68a)
证明 因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/26_05.jpg?sign=1739285518-GmO1EUPl6tYZ6Admg1cD6mYWlchb5X6w-0-eaeb2f4b93209872249b15aaf50634dd)
定理1.6.18 若函数存在,g(x)在[a,b]上满足Lipschitz条件,即∀a≤
,有
,其中L>0为常数,则
存在.
证明 首先,当g既满足Lipschitz条件又是增函数时,对任一划分T,有Δg(xi)≤LΔxi,从而
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/26_10.jpg?sign=1739285518-ZaucPSCNjzHk4aVy0U2ojv6txIdc5y9H-0-1f81030d181af77a612cea3348693130)
故有=0,从而
存在.
其次,当g(x)仅满足Lipschitz条件时,令,因g1(x)既是增函数又满足Lipschitz条件,故
存在.又因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/26_15.jpg?sign=1739285518-n7L8ehuu32uuEAQqX2H7SzKsYE0bsSHR-0-f1c556faa9fe9b7cc54d89f3fb438800)
故g2(x)也满足Lipschitz条件,当x1≤x2时,
g2(x2)-g2(x1)=Lx2-Lx1+g(x1)-g(x2)
=L(x2-x1)-[g(x2)-g(x1)]≥0
故g2(x)也是增函数,则有存在,从而
存在.■
下面介绍Stieltjes积分的主要性质.
定理1.6.19 (1)设g(x)在[a,b]上处处有限,则=g(b)-g(a);
(2)如果均存在,则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/27_05.jpg?sign=1739285518-Rd1ScbhGxxBJU49EBtDkyWd6n9NUUpPw-0-96b195ae3db4b426b68048afab103eb7)
(3)如果均存在,则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/27_07.jpg?sign=1739285518-h2U8gLQsSCetzqLdCzSjd3MIOE7X1cmW-0-7a3490970a2c65057ed9026f2ddccedd)
(4);
(5)若a<c<b,且都存在,则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/27_10.jpg?sign=1739285518-laZjLtseh7f02ektcDFkzEFubldF1v8S-0-3494e03860f0937592757714ffd888d1)
注:若a<c<b,则由存在,不能推出
存在.
例如,设,显然
=0,
=0(因为Δg(xi)=0).但
不存在,事实上,对[-1,1]的任一划分,设0不是分点,且0∈(xk-1,xk),此时若取ζk=0,则
=0,若另取ζk>0,则
=f(ζk)=1,故不可积.
定理1.6.20 若存在,f(x),g(x)是[a,b]上的有界函数,则
也存在,且
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/27_21.jpg?sign=1739285518-VyOjhCdgqR4eKKoOmu7JBC4nhfak7C8S-0-f7e54a3b6f9a2dd48783abbb44c6166f)
证明 对[a,b]的任一个划分
T:a=x0<x1<…<xn=b
由
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_01.jpg?sign=1739285518-oPvfhNa2fyWVOCvsiZ63oddCj6Z9I8Ky-0-51d78ae102b48c6ea7beb3f071ecd8e8)
考虑对[a,b]作分割T′:a≤ζ1≤ζ2≤…≤ζn≤b,即得新划分.显然有xi∈[ζi,ζi+1]=[ηi,ηi+1],i=1,2,…,n-1,且当λ(T)=max(xi-xi-1)→0时,λ(T′)≤2λ(T)→0.故由存在知,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_03.jpg?sign=1739285518-FjvrtTFNCH3ugGGhhZyn9mh7QMRXTkMH-0-9ddce1b140c76ad6ef7fa9d84aa7ab36)
即
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_04.jpg?sign=1739285518-O9OfrAfcqwyx8ysaFfou2oFuZRWIacmg-0-5d2c72b100bf8b7dc26591977547f1bc)
所以
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_05.jpg?sign=1739285518-jJ7j7klhGN1AbKmlGCHEIHFwOrGct8TE-0-ae4f852ad33054fec3c67bb1bd3343b0)
定理1.6.21 若f在[a,b]上Riemann可积,且存在[a,b]上Riemann可积函数φ(x),使g(x)=,则
.
证明 先证可积.由φ(x)可积知
≤L,从而
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_10.jpg?sign=1739285518-45MOGvYKSPi8KmdVKxjj7TNm8RCKvWP4-0-0da5cde0b64db4d3fd0244a5b9df057d)
从而可积.下面证明
.
当φ(x)为正时,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_13.jpg?sign=1739285518-0ENFzf9xdODTZWKEsnYJBjZZpYQRVB4G-0-152904b0b5880c8dad04d2c5c046389e)
又因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_01.jpg?sign=1739285518-OI6R9RCREc2OlAtAUvhA0CaIFfZoH5Ex-0-329daa96c95f8e276927a1fe5e09c4c4)
所以
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_02.jpg?sign=1739285518-B7yewyVcBqgVMOSdO3YIlrCjq7qNG0R5-0-f3abd8172a0dc7a66b7293872a91e6fb)
故
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_03.jpg?sign=1739285518-XVBDas7F410tDqjYcEOe2RKAa6etHTW3-0-6a0381685c053a3b1ae7973539fbb39c)
当φ为一般函数时,令,则φ1(t),φ2(t)均非负,且
,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_06.jpg?sign=1739285518-BOmYPGSROII4xkWOFEJWuWzSsNvUfVpa-0-c295a6939ad8ce926f9dcd782ff18495)
证毕. ■
下面两个定理也是非常有用的,我们省去它们的证明.
定理1.6.22(中值定理) 设f(x)在[a,b]上有界,m≤f(x)≤M,g(x)在[a,b]上单调增加,且存在,则存在μ∈[m,M],使
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_08.jpg?sign=1739285518-Z9MdbrLmgOi2YkvVKyM80sKtHcI6EPbF-0-474f10a5e923c5c22cfd06ab0ab500ba)
定理1.6.23 (1)设fn(x)在[a,b]上连续,且fn(x)在[a,b]上一致收敛于f(x),g(x)在[a,b]上是有界变差函数,则.
(2)设f(x)在[a,b]上连续,gn(x)是一致有界变差的,即
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_10.jpg?sign=1739285518-FbIBOIkPofy8wDncPKduFXrS4OWw3yfk-0-5024495802bb7e1411446f79c15c0301)
且
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_11.jpg?sign=1739285518-MmlgMHC9VU2CqkVk18tgnDjVZv2Rlrh6-0-db2227c48532d2003bc9c39f811a0cbb)
则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_12.jpg?sign=1739285518-Mc7y688LZl2CpdKS2XegVqr0KzjRdok8-0-3224e4928fe2c9f88dbd5c3b02d42a5b)