![信息流推荐算法](https://wfqqreader-1252317822.image.myqcloud.com/cover/888/51709888/b_51709888.jpg)
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_01.jpg?sign=1739272146-7siG07qXyWZgYu2o0tYjG0ZXvZZXanZp-0-54b650933084987cd37529170493cbe2)
图3-14 Item2vec和SVD的可视化效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_02.jpg?sign=1739272146-Dgdd4FpJygvDUbADH2grJKXISBLCbKCS-0-aa771ff6aca418e9ca1cd34a33601da2)
图3-16 视频观看倾向与发布时间对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_01.jpg?sign=1739272146-YKUFqHIwyEPNxuNbOAnX9nq7KCvzXtT6-0-e31169041cce14b36e15ebac747187a5)
图3-30 Node2vec效果可视化
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_02.jpg?sign=1739272146-5VZSlfMofgTzd4j0CVfVy25lsLcEuILa-0-7be33e4aa3449a1d6789a4b0b47203c1)
图3-37 DIEN模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_01.jpg?sign=1739272146-t31Kn5pAbXi4dHEPhDo00N57nY0kVYIC-0-61dd5b7381bebf5eda33c7d0f2612fe0)
图4-2 不同α系数的衰减速度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_02.jpg?sign=1739272146-8vvZ9j5NV5VmNX2ZslPYYiuHO1OBOt3Z-0-de59391ea5da6fae55a7e41371371d15)
图4-20 PRAUC与Hit Rate在粗排中的区别
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_01.jpg?sign=1739272146-jTWbqWHavtjQTiSFL22eLVDAXg4hCzq9-0-78f6f4836ebaa84e9faf0527cc21e6dd)
图5-15 不同正则化方式的训练和测试误差
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_02.jpg?sign=1739272146-TENU6hwrTTslnHp29MFLUMOej8aqbrMp-0-567eaa743eb74518636a58f5f8badc4a)
图5-16 DIEN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/7_01.jpg?sign=1739272146-Ya2oMKaO2klBVaN6aEtja7WcOGwCArpl-0-9c5fb9c78ae46a23fbf8bcba99c9a798)
图5-18 DSIN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_01.jpg?sign=1739272146-zuKX1GOdQIrF9XoBtDh6cM0NglcACLCr-0-38925e369ee2ae7b4eec372d2183db2a)
图5-20 工业级展示广告系统的实时点击率预测系统
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_02.jpg?sign=1739272146-rxNf79ay2l5RxckIAG7qAMqeUivqPQtP-0-68a5619143d63d4e11f0f4262670f7aa)
图6-3 高斯过程拟合函数的示例
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_03.jpg?sign=1739272146-JyQJXYiI1HdOPFRo7v4r2YuV8B9GTy1K-0-ab6c5c3888e7b9d77d3621333d40b6f3)
图6-7 (1+1)-ES和(μ+λ)-ES的对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_01.jpg?sign=1739272146-u4rUg8u4WGZ3kJkI6XXGpdlj8yaD7euT-0-1d64f41dec94a0e4b01e99f92454a531)
图6-8 OpenAI ES优化的示例一
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_02.jpg?sign=1739272146-gkoswZ3vLEWw3gDSrzYwwU5iAaGHDXIg-0-3612679f0ffa8554a8358f23df158762)
图6-9 OpenAI ES优化的示例二
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/10_01.jpg?sign=1739272146-YbO8I5NWFxojBlm5SYuOEneKeSxO7zuo-0-b3a66853728940f88bb75fb5e529d584)
图6-16 多个强化学习方法在4种类型上的动作分布
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_01.jpg?sign=1739272146-PaUFVn2yaWiPkIXE2wJCkCztnOHmd1FK-0-85fd4e503e9e4d80f6b6db1cb6faae4a)
图7-3 DLCM在不同相关文档上的优化效果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_02.jpg?sign=1739272146-ohH8XDVTVvfFd2yNTjQIwphBdC8b9yGZ-0-b8a5758ca2d2a03f35cd8c05268b960b)
图7-8 Seq2Slate的计算流程
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_01.jpg?sign=1739272146-h33Hov7Vu3EyOuvyBhIgewJBHw0PDDh8-0-d6d0fe9dd5e5603b0ae2ab7a2489bca0)
图7-10 GRN中的Evaluator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_02.jpg?sign=1739272146-bonXM7LZq1eKGKo1dOR7qEtaaExhVqzT-0-99c830e8317f534c494a58f97f7a486f)
图7-11 GRN中的Generator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_01.jpg?sign=1739272146-6DDgjEmG7D2Yyl9G9Ki4nuL2bCtJDWo3-0-8c66c438b33c8e900af83d88e4b0af98)
图7-14 电商场景中的案例对比:list-wise模型与Permutation-wise模型
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_02.jpg?sign=1739272146-sCMKiIDmYeMHP3XiOU5uro5HHGM94cLC-0-b99631f9d1839cc211824a474a72b44c)
图7-16 PRS框架的整体结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_01.jpg?sign=1739272146-b8Q3p3PRnG6KD82H3qrchDAtSrK2IcYR-0-d4fe2732d245b0332ddbedebb7fee3b4)
图7-17 基于Beam Search的序列生成方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_02.jpg?sign=1739272146-2LCWfNbWsESLKVz20SlO8JC0KxzSMxUw-0-159d22337ef5d13835ea0db0234a565a)
图7-18 DPWN的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_01.jpg?sign=1739272146-3QcNvxVoYIWs8runMo3MKcgxni6VlY2K-0-ebc947daa20c4d7560b09fda4208f2a8)
图7-19 流行的端云协同瀑布流推荐系统框架
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_02.jpg?sign=1739272146-5lrgfD46wXQSWtslkshq2Jos9a58LFTA-0-226235a2ae752dcd67a82ffbd05653b5)
图7-22 EdgeRec中的异构用户行为序列建模和上下文感知重排的行为注意力网络
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_01.jpg?sign=1739272146-A6B7TtO0Pmt4AM2BEKiBl5CsogULsp3t-0-c2ef552b3bbeee2bbf4c2f62d69c4871)
图7-24 减少模型参数空间的MetaPatch方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_02.jpg?sign=1739272146-YwMuhcxbfbXv68fbe1BGXTdtnnVOuPR1-0-8c7b64083a15c23ad567128129b2dea0)
图7-25 增强云端模型的MoMoDistill方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_03.jpg?sign=1739272146-q3g0S5Hf8l0Ar5bkfl6Hd0ERc7UuOISN-0-bb917d5babaf4ea04c1cb69c4cf1b577)
图7-26 DCCL-e和DIN在所有细分用户群上的推荐效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_01.jpg?sign=1739272146-CgRF2gFHmVv2bc1dJdwqPTpkZm5Lc7yV-0-b23cf04abcc8328fc1dbe22e4bf2fad2)
图8-3 负采样校准前后的概率密度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_02.jpg?sign=1739272146-kfOQ8gakuGpgqK5U6EzIw56iM2kWRX6F-0-54bcdf17db3bae53ee646eed29558750)
图9-2 DropoutNet的相关实验结果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_01.jpg?sign=1739272146-1fXRFo6iyvqUr7gmwBdK7IE3I52mEzSR-0-ced53803522c56fa9e40ef01a33cb0b7)
图9-5 MWUF算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_02.jpg?sign=1739272146-Wmjj9XCqU9MghzPZRnxUSDzB9yU5f5W7-0-c1aee84679c034c5741a9a78ae304ad4)
图9-7 Cold & Warm算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_01.jpg?sign=1739272146-isINI1UA93GFUAMhHcP2DxBQ1WEk1J8k-0-bb66feb1b6021825ef191b7431e57655)
图9-9 冷启动和非冷启动任务的效果变化趋势
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_02.jpg?sign=1739272146-IxaFMmazBidwox0Xs380A9l6UDyKRRMd-0-54c43a8240d2c617b96fdbfe5b7bbfa8)
图9-11 数据偏置的说明和它对于模型训练的负向影响
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_03.jpg?sign=1739272146-t4EqbdhG9F8VFGpgNz8G3D7pbZSPv2As-0-ddcfada42f783186ed48aff80313d980)
图9-17 CIKM Cup 2016数据集的相关分析
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_01.jpg?sign=1739272146-juATU6j3Bv37bWa7EQtT3TMHvWGfvibx-0-b9497b119d0bd73635222f588d3fe2d8)
图9-19 属性间的相关性在源领域和目标领域是一致的
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_02.jpg?sign=1739272146-5oi0PpOrIOs6mNKNe4SHWSYNIYQQNWOT-0-f1861fe5a9e2699ee078f84859c11017)
图9-20 ESAM算法中多个损失的设计意图
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_01.jpg?sign=1739272146-uJp9hWwSq2fCl0UinXXgDMdI8pGHSs0w-0-e61439a47122c515e1aae7fb58d44755)
图9-21 T-SNE对数据特征分布的可视化,红色和蓝色分别表示源领域和目标领域
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_02.jpg?sign=1739272146-vB8XNvskbtUHdTwqMPBxnBXayUq8YAcJ-0-60f5def2af13431917b9f6ba2c0eaece)
图9-22 真实数据上的相关性得分分布对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_01.jpg?sign=1739272146-Y01E1hKgJ5BCLdxN2AMo5R4LtoDDt7sq-0-1c3ae05938420e72192f468a28d611aa)
图9-23 解决协同过滤中长尾问题的对抗网络模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_02.jpg?sign=1739272146-A4YuoyqrZT34SGjGBwAkUlrPttVO2Jds-0-55a290c71ff4207da08caaf048647434)
图10-6 层与桶的流量关系