![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.1 直角坐标显式表达举例
以较为一般的泛函为例,其定义在一元函数所在的空间上.函数y=y∗(x)是所要寻求的“极小点”,它是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P33_21408.jpg?sign=1738896530-Z9N6BUZcYporVc7FBQkWVcohdWHa8UVp-0-b6692dec923e7e5e04da2fb213599021)
的“极小点”.其中的函数F关于变量有足够的可微性,如连续可微.泛函定义在如下连续可导函数集合上:
DF={y∈C1[a, b],y(a)=A, y(b)=B}
对于任意的函数y(x),泛函值Ly≥Ly∗.这里引入摄动函数
h(x):=y(x)-y∗(x)
满足
h(a)=h(b)=0
在此基础上,看泛函值的变化
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21416.jpg?sign=1738896530-itt7AMyZWsnfqxSfLFkVnRLTZXsOjHJE-0-3783bfda3ed1708ae975a939ff766173)
上面最后一个等号用到了分部积分和摄动函数的齐次边界条件h(a)=h(b)=0.
根据极值点,也就是驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21418.jpg?sign=1738896530-2YN9prjTpXBhrExqVvBUpxiVEgPXfSOb-0-faa02881513fc15b5f7b1ec9054ff704)
即
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21420.jpg?sign=1738896530-A2xOcKRzCUltavrsZU5YVxZhjBwARH3F-0-329a0f584f3c62ef9a03dad65495f09e)
再利用定理1.5,同时注意摄动函数h(x)的任意性,可以得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21422.jpg?sign=1738896530-w2iyd0ARPj4x3i1u1XhMnCmibyS9YiWr-0-c07f9103bcf08172d32f22bec0cbf3bf)
此即“极小点”y=y∗(x)满足的必要条件,通常称为欧拉-拉格朗日(Euler-Lagrange)方程.
将式(2-15)用于前文的最速下降线问题.
例2.1 最速下降线问题的解(即质点下降的曲线)满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21423.jpg?sign=1738896530-QV3l80ldtoCkuwR46vnZmzQWkYOe6T9e-0-ac9e630a4461e9c08fc2cb85087cacc2)
解 回顾最速下降线所满足的泛函式(2-4)及其边界条件式(2-5),有
(注意,这里不含变量x)
得到欧拉-拉格朗日方程
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21430.jpg?sign=1738896530-7wjTggEr6sywdbVdeWf24xA3fawOdP2a-0-c97dc42712f01a278ce6a0e161f834c5)
具体讨论求解.两边乘以函数导数y′得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21432.jpg?sign=1738896530-369iF4VGnAtyDZK55IdzFDalubDucX6Z-0-4540bbd6695f9061c22cf94ba096871e)
得到首次积分
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21434.jpg?sign=1738896530-SsjF8F6ppRzGQ3sS9frmEEKSVwZsA8uc-0-1f589e019268409df1d6268b260f1609)
通分之后,令得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21435.jpg?sign=1738896530-FWbzDbjMEGlvQ8tMsPvcUwHf7j9BFRsu-0-4e472f722d28fd384ea9e4e023d25ab3)
根据微积分知识,可以将导数y′理解成曲线切线的斜率,所以记y′=tanθ,这里的θ就是曲线切线与x轴正向夹角.从式(2-17)得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21437.jpg?sign=1738896530-StlmAMuowhzHiHcngyP7RpTH1SmDcHKQ-0-768f916b92ddb7f1911538a5405dd6f6)
代入y′=tanθ,就有
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21439.jpg?sign=1738896530-vZJ5SnReOGLpzrDDyPyKDc1ugdCmgS75-0-168be8b1f584f320072650ef6cda937f)
积分后得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21441.jpg?sign=1738896530-8eQseoZBWDefgNfH6pKt9ags7T3EuCzf-0-da28272d10a2d24d8f978cd1cb4b0361)
式中,C2为积分常数.引入变量π-t替换2θ,化简式(2-18)和式(2-19),并结合y(0)=0的边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21443.jpg?sign=1738896530-kx7nfHoYIqIEElZArOvcttrkgOzzHPDN-0-556d94c35d668e40ab43a6851f3b1b38)
最后可以通过条件y(X)=Y确定式(2-20),这里略去.或者记r=C/2即可得到式(2-16).式(2-16)或者式(2-20)就是最速下降线满足的曲线方程,如图2-1所示.