![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.2 参数方程表达举例
现在讨论参数方程表示下平面曲线的变分问题.
假设光滑的平面曲线的参数方程表示如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21445.jpg?sign=1738896742-bwq54TFmOZAMNCuaSssOVYtzMTuy8mXH-0-4951a45576b68c5d11018bc8831da627)
这条曲线L是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21447.jpg?sign=1738896742-Ba3lBHnWi66ERIIyxoqFg7e6a1tfEZTq-0-063abb3bd3eb943740288fc1b9d1c9b5)
的“极小点”.为讨论方便起见,假设泛函定义在连续可导函数集合(C1[α, β])2=(C1[α, β])×(C1[α, β])上,集合的元素满足边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21449.jpg?sign=1738896742-FNajp1JNQ7tojoKKQYifkkYQE2b0Qb4u-0-b495772e3f03ffb8a51194699decbe95)
与直角坐标形式下类似,选取齐次边界条件的摄动函数(组)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21451.jpg?sign=1738896742-unWY9rPS1XpbOOXened78x4U1RcSIl4g-0-946f2098ff6199d0ee31a97bc37c38f0)
假设L就是极小值函数曲线,那么摄动后的展开式如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21453.jpg?sign=1738896742-lNiPvJvOf0iYweygbMl0pFzAUIfQiGdr-0-66a9d15ba2f568815fc104b0ecaa34ca)
得到泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21455.jpg?sign=1738896742-RLopC5XzVNXudBYd7TxcWMZlnVSL7Qwn-0-0b90895730f0f9f9c93ac1ec1a9ddf52)
当ε=0时极小点也是驻点,曲线L满足泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21458.jpg?sign=1738896742-QkVSYcL31lynM3JXEBqoASBcStE96HAx-0-62f5f31df8eb105b3e8bc2eefb78f5f3)
这里利用了摄动向量{φ1,ψ1}的齐次边界条件.再利用摄动向量的任意性和定理1.5即可得到泛函式(2-22)的驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21460.jpg?sign=1738896742-XbUgo5tFoanmRm5ZHUGgWNfmK3TbK6WJ-0-83bb448fee1f59ebfc130ac7e11c1d7a)
这正是曲线在参数方程表示下泛函式(2-22)对应的欧拉-拉格朗日方程.
例2.2 等周问题的解满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21461.jpg?sign=1738896742-9Da4eCKyneubL5I3BsWZOUxR6DhMxQMe-0-fdc69c11170e177e3a2c6bdfe2438d5d)
解 回看等周问题的带有约束的泛函式(2-7)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21462.jpg?sign=1738896742-1dvisHAbP6ShJiXI5f0u96B6LSIzmrRx-0-791587c4b481512859e0b09ca1fa2817)
这里的
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21464.jpg?sign=1738896742-1XNMxXLdegGl2JXQNXroRnGg2PTiJIfz-0-7998cc84ca2e6ee71bbe38e9cd785e14)
其相应的欧拉-拉格朗日方程变成
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21465.jpg?sign=1738896742-QSJysLcguwCohfDOAsWuB4yYg9JKEkV7-0-0288ac6ce93c45057b5682d4b3c56873)
和
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21466.jpg?sign=1738896742-iUkogG7BvYsMsMp4sDVzALTsFhWlo8AH-0-837ffdd555990c565cb4cd21e517a801)
对两个方程进行首次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21469.jpg?sign=1738896742-CLMr7y6uLLtkFpzl4opdT9ORTfZjb0UP-0-85fc996b1152bad8f5c9f27bd864b5ff)
分别将上面两式乘以φ′和ψ′,再相加得到
φ φ′-C1φ′+ψ ψ′-C2ψ=0
再次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21519.jpg?sign=1738896742-vUw8lQ34y1GRXM1kRPLmZlJPHaJnpx9e-0-068270bbdcdf97a7e3aab97dc70a3640)
因此,可得出等周问题的必要解是圆周,也就是式(2-24).式(2-26)中的常数C1、C2和C可以依据边界条件和围成区域的曲线长度确定,这里略去讨论.