![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.3 与曲面相关的变分问题举例
这一节转向讨论空间的最优曲面的变分问题.
对于直角坐标表示下的光滑曲面
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21521.jpg?sign=1738897720-117Ol7WaW5HAs3CzPj8EOLsN762YaAWC-0-44501b344935c47cb052f0d487d3abc1)
其中的定义域Ω是一个有界闭区域,其边界为光滑曲线∂Ω.考虑曲面满足如下固定边界条件:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21523.jpg?sign=1738897720-XR03UYYA2p790b1GHjDwsMd5EdH16dss-0-8b9633dc26575913bd2481f6d70053ff)
对应于Σ的边界曲线为
Γ:(x, y, ϕ(x, y)),(x, y)∈∂Ω
如图2-4所示,其中w=z=f(P),P(x, y)∈Ω.
对应这类二维问题的泛函为
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21525.jpg?sign=1738897720-SvqQR21xwKw5wEATWjIeMSgM6pdBnm73-0-fcec4b161c21c0acc08586eb2a1aab34)
这里的▽是哈密顿(Hamilton)算子,▽z={zx, zy}.
函数F(P, z,▽z)充分光滑,可以关于函数项展开
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21527.jpg?sign=1738897720-7If7b7xhjgh4NSUMs4fKo2mnE5JEilq4-0-fd2cfc97f2bdbc398943c32e05638933)
这里的摄动函数z1=z1(x, y)具有连续的偏导数,而且z1|∂Ω=0,这样,泛函的极值点落在ε=0处:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21529.jpg?sign=1738897720-M86P5keghfR2EtDKtNgDBA2ZRzpWYKGG-0-acc04f69c2eada17dc3acc82ca8d392d)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21535.jpg?sign=1738897720-QFSu48vivSBpRykJInmMU6OIosxgGJzR-0-fcd86cd728ae1db072127a1de4883c30)
式中,n是边界∂Ω的外法线单位向量,dl为边界∂Ω的弧微分.且有
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21537.jpg?sign=1738897720-ZMgvfNqsOheLaOSRwoMwEJcOWKONKHST-0-de94c8e424741eb6615abb560431660c)
结合边界条件z1|∂Ω=0,再利用z1的任意性和定理1.6,从上式就可以得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21539.jpg?sign=1738897720-V1W8IKnRGMUIi0eQ4MBHWCLg8NHDjp5w-0-a8139f7496fb0a88ae264f5a8c5618fb)
此即该问题的欧拉-拉格朗日方程.
例2.3 在约束条件式(2-28)下的泛函,式(2-29)的极小问题,即
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21540.jpg?sign=1738897720-moTPVbC0K3GZJRvw9P5mvVdZeWGhatnz-0-12807a5a55de0e7d7e1b811ae07f07f9)
的解z满足极小函数曲面方程
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21542.jpg?sign=1738897720-Ap5Y364xFbQo4WtIolQeZlvseC39yIyA-0-6024fd563f8351ba22d5eb4cec8273eb)
解 泛函L对应式(2-29)的能量函数
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21544.jpg?sign=1738897720-z3z0nGdfsq7NQOPd5EbFIozaCa3JFrKP-0-8ba45f040efae02545c02eff5f0533ec)
这里的F仅依赖于.利用式(2-30)得出极小曲面应该满足的欧拉-拉格朗日方程
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21546.jpg?sign=1738897720-BUTyZ6tjLDWaA5GevEo4vnsQohQFIm3S-0-d80bf044af2225bb357b33c253682ec0)
所以,极小曲面z=z(x, y)满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21552.jpg?sign=1738897720-mfV4zpBLfH4zpc2Y5GP56LIrMe5XOCfY-0-717c60fc3b77cfa0fd5258c235552cc1)
和边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21553.jpg?sign=1738897720-Kkx09wjB9Vi5uaInCoc5ZElf54m5Ahe4-0-5eb33ca9ab0405ab37c4247f7f3bfaeb)
这里的.
以上三个例子是比较典型的经典变分问题,各有特点.通过以上详细分析,得出了曲线或曲面所要满足的方程和定解问题,余下的工作是针对具体的条件进行定解问题求解.